scholarly journals Visual Three-Dimensional Reconstruction of Aortic Dissection Based on Medical CT Images

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaojie Duan ◽  
Dandan Chen ◽  
Jianming Wang ◽  
Meichen Shi ◽  
Qingliang Chen ◽  
...  

With the rapid development of CT technology, especially the higher resolution of CT machine and a sharp increase in the amount of slices, to extract and three-dimensionally display aortic dissection from the huge medical image data became a challenging task. In this paper, active shape model combined with spatial continuity was adopted to realize automatic reconstruction of aortic dissection. First, we marked aortic feature points from big data sample library and registered training samples to build a statistical model. Meanwhile, gray vectors were sampled by utilizing square matrix, which set the landmarks as the center. Posture parameters of the initial shape were automatically adjusted by the method of spatial continuity between CT sequences. The contrast experiment proved that the proposed algorithm could realize accurate aorta segmentation without selecting the interested region, and it had higher accuracy than GVF snake algorithm (93.29% versus 87.54% on aortic arch, 94.30% versus 89.25% on descending aorta). Aortic dissection membrane was extracted via Hessian matrix and Bayesian theory. Finally, the three-dimensional visualization of the aortic dissection was completed by volume rendering based on the ray casting method to assist the doctors in clinical diagnosis, which contributed to improving the success rate of the operations.

1984 ◽  
Vol 247 (3) ◽  
pp. E412-E419 ◽  
Author(s):  
L. S. Hibbard ◽  
R. A. Hawkins

Quantitative autoradiography is a powerful method for studying brain function by the determination of blood flow, glucose utilization, or transport of essential nutrients. Autoradiographic images contain vast amounts of potentially useful information, but conventional analyses can practically sample the data at only a small number of points arbitrarily chosen by the experimenter to represent discrete brain structures. To use image data more fully, computer methods for its acquisition, storage, quantitative analysis, and display are required. We have developed a system of computer programs that performs these tasks and has the following features: 1) editing and analysis of single images using interactive graphics, 2) an automatic image alignment algorithm that places images in register with one another using only the mathematical properties of the images themselves, 3) the calculation of mean images from equivalent images in different experimental serial image sets, 4) the calculation of difference images (e.g., experiment-minus-control) with the option to display only differences estimated to be statistically significant, and 5) the display of serial image metabolic maps reconstructed in three dimensions using a high-speed computer graphics system.


2017 ◽  
Vol 44 (1) ◽  
pp. 62 ◽  
Author(s):  
Jonathon A. Gibbs ◽  
Michael Pound ◽  
Andrew P. French ◽  
Darren M. Wells ◽  
Erik Murchie ◽  
...  

There are currently 805 million people classified as chronically undernourished, and yet the World’s population is still increasing. At the same time, global warming is causing more frequent and severe flooding and drought, thus destroying crops and reducing the amount of land available for agriculture. Recent studies show that without crop climate adaption, crop productivity will deteriorate. With access to 3D models of real plants it is possible to acquire detailed morphological and gross developmental data that can be used to study their ecophysiology, leading to an increase in crop yield and stability across hostile and changing environments. Here we review approaches to the reconstruction of 3D models of plant shoots from image data, consider current applications in plant and crop science, and identify remaining challenges. We conclude that although phenotyping is receiving an increasing amount of attention – particularly from computer vision researchers – and numerous vision approaches have been proposed, it still remains a highly interactive process. An automated system capable of producing 3D models of plants would significantly aid phenotyping practice, increasing accuracy and repeatability of measurements.


2001 ◽  
Vol 82 (6) ◽  
pp. 475-478
Author(s):  
M. E. Sitdykova ◽  
A. Yu. Zubkov ◽  
F. M. Gilyazova

Due to the rapid development of new computer technologies and their rapid introduction into the field of medical technology the diagnostic capabilities of ultrasound have significantly enriched and expanded. A new trend appeared - ultrasound angiography based on color Doppler mapping (CDM), three-dimensional reconstruction of vessels, use of echocontrast enhancement of Doppler signal and "second harmonic" energy. The new method of vascular studies was based on the physical phenomenon discovered in 1842 by the Austrian scientist Doppler and named after him in the world literature.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Lingyun Li

Unmanned Aerial Vehicles (UAV) tilt photogrammetry technology can quickly acquire image data in a short time. This technology has been widely used in all walks of life with the rapid development in recent years especially in the rapid acquisition of high-resolution remote sensing images, because of its advantages of high efficiency, reliability, low cost and high precision. Fully using the UAV tilt photogrammetry technology, the construction image progress can be observed by stages, and the construction site can be reasonably and optimally arranged through three-dimensional modeling to create a civilized, safe and tidy construction environment.


1992 ◽  
Vol 43 (5) ◽  
pp. 923 ◽  
Author(s):  
JG Clement ◽  
RA Officer ◽  
E Dykes

Shark vertebral centra show no histological evidence of resorption at any time in the animals' life. Deorganification of centra always reveals a large, residual, stable, three-dimensional skeleton. In contrast, the mineralized parts of other organs (e.g. claspers and jaws) crumble into their individual mineralized subunits, the tesserae, upon deorganification. In both cases, only appositional growth of cartilage on the pre-existing mineralized template is possible. The basic 'double-cone' shape of the vertebrae facilitates increases in body length simultaneously with an accompanying increase in girth. Once the initial shape of the mineralized portion of a vertebral centrum is fully established and hence can be described, then relatively simple mathematical models might be devised to predict future growth patterns. To advance this hypothesis, it has first been necessary to develop a method that can accurately record the sizes and shapes of complex three-dimensional anatomical structures. This paper describes a technique that is capable not only of recording and measuring the size and shape of shark vertebrae but also of predicting their subsequent growth. Furthermore, the technique enables reproduction of three-dimensional coloured and shaded stereoscopic images of vertebral structures, facilitating a better understanding of their intricate morphology. Three-dimensional coordinate data gathered from any shark vertebra can be manipulated mathematically to model future vertebral growth. Producing realistic images of vertebrae transformed in this way may allow the exploration of possibly unrealized taxonomic affinities.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wei He

The three-dimensional reconstruction of outdoor landscape is of great significance for the construction of digital city. With the rapid development of big data and Internet of things technology, when using the traditional image-based 3D reconstruction method to restore the 3D information of objects in the image, there will be a large number of redundant points in the point cloud and the density of the point cloud is insufficient. Based on the analysis of the existing three-dimensional reconstruction technology, combined with the characteristics of outdoor garden scene, this paper gives the detection and extraction methods of relevant feature points and adopts feature matching and repairing the holes generated by point cloud meshing. By adopting the candidate strategy of feature points and adding the mesh subdivision processing method, an improved PMVS algorithm is proposed and the problem of sparse point cloud in 3D reconstruction is solved. Experimental results show that the proposed method not only effectively realizes the three-dimensional reconstruction of outdoor garden scene, but also improves the execution efficiency of the algorithm on the premise of ensuring the reconstruction effect.


Sign in / Sign up

Export Citation Format

Share Document