scholarly journals A Secure Localization Approach Using Mutual Authentication and Insider Node Validation in Wireless Sensor Networks

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Gulshan Kumar ◽  
Mritunjay Kumar Rai ◽  
Hye-jin Kim ◽  
Rahul Saha

Localization is a concerning issue in the applications of wireless sensor networks. Along with the accuracy of the location estimation of the sensor nodes, the security of the estimation is another priority. Wireless sensor networks often face various attacks where the attackers try to manipulate the estimated location or try to provide false beacons. In this paper, we have proposed a methodology that will address this problem of security aspects in localization of the sensor nodes. Moreover, we have considered the network environment with random node deployment and mobility as these two conditions are less addressed in previous research works. Further, our proposed algorithm provides low overhead due to the usage of less control messages in a limited transmission range. In addition, we have also proposed an algorithm to detect the malicious anchor nodes inside the network. The simulated results show that our proposed algorithm is efficient in terms of time consumption, localization accuracy, and localization ratio in the presence of malicious nodes.

2014 ◽  
Vol 622 ◽  
pp. 191-198
Author(s):  
Devasagayam Jayashree ◽  
V. Uma Rani ◽  
K. Soma Sundaram

Due to emerging technology Wireless Sensor Network (WSN), it is necessary to monitor the behavior of sensor nodes and establish the secure communication in network. Security is a challenging task in wireless environment. Several encryption mechanisms are available to prevent outsider attacks, but no mechanism available for insider attacks. A trust model is a collection of rules used to establish co-operation or collaboration among nodes as well as monitoring misbehavior of wireless sensor networks. Trust model is necessary to enhance secure localization, communication or routing, aggregation, collaboration among nodes. In this paper, proposed a behavior based distributed trust model for wireless sensor network to effectively deal with self-ish or malicious nodes. Here, take multidimensional trust attributes derived from communications and networks to evaluate the overall trust of sensor nodes. It monitors the behavior of nodes and establishes secure communication among networks.


The fundamental capacity of a sensor system is to accumulate and forward data to the destination. It is crucial to consider the area of gathered data, which is utilized to sort information that can be procured using confinement strategy as a piece of Wireless Sensor Networks (WSNs).Localization is a champion among the most basic progressions since it agreed as an essential part in various applications, e.g., target tracking. If the client can't gain the definite area information, the related applications can't be skillful. The crucial idea in most localization procedures is that some deployed nodes with known positions (e.g., GPS-equipped nodes) transmit signals with their coordinates so as to support other nodes to localize themselves. This paper mainly focuses on the algorithm that has been proposed to securely and robustly decide thelocation of a sensor node. The algorithm works in two phases namely Secure localization phase and Robust Localization phase. By "secure", we imply that malicious nodes should not effectively affect the accuracy of the localized nodes. By “robust”, we indicate that the algorithm works in a 3D environment even in the presence of malicious beacon nodes. The existing methodologies were proposed based on 2D localization; however in this work in addition to security and robustness, exact localization can be determined for 3D areas by utilizing anefficient localization algorithm. Simulation results exhibit that when compared to other existing algorithms, our proposed work performs better in terms of localization error and accuracy.


Author(s):  
Shrawan Kumar ◽  
D. K. Lobiyal

Obtaining precise location of sensor nodes at low energy consumption, less hardware requirement, and little computation is a challenging task. As one of the well-known range-free localization algorithm, DV-Hop can be simply implemented in wireless sensor networks, but it provides poor localization accuracy. Therefore, in this paper, the authors propose an enhanced DV-Hop localization algorithm that provides good localization accuracy without requiring additional hardware and communication messages in the network. The first two steps of proposed algorithm are similar to the respective steps of the DV-Hop algorithm. In the third step, they first separate error terms (correction factors) of the estimated distance between unknown node and anchor node. The authors then minimize these error terms by using linear programming to obtain better location accuracy. Furthermore, they enhance location accuracy of nodes by introducing weight matrix in the objective function of linear programming problem formulation. Simulation results show that the performance of our proposed algorithm is superior to DV-Hop algorithm and DV-Hop–based algorithms in all considered scenarios.


Author(s):  
Turki Ali Alghamdi

Abstract Wireless sensor networks (WSNs) comprise tiny devices known as sensors. These devices are frequently employed in short-range communications and can perform various operations such as monitoring, collecting, analyzing, and processing data. WSNs do not require any infrastructure, are reliable, and can withstand adverse conditions. Sensor networks are autonomous structures in which the sensor nodes can enter or leave the network at any time instant. If the entering node is attacker node it will monitor the network operation and can cause security issues in the network that can affect communication. Existing literature presents security improvements in such networks in the form of cryptography, asymmetric techniques, key distribution, and various protocols. However, these techniques may not be effective in the case of autonomous structures and can increase computational complexity. In this paper, a convolutional technique (CT) is proposed that generates security bits using convolutional codes to prevent malicious node attacks on WSNs. Different security codes are generated at different hops and the simulation results demonstrate that the proposed technique enhances network security and reduces computational complexity compared to existing approaches.


2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Kresimir Grgic ◽  
Drago Zagar ◽  
Visnja Krizanovic Cik

The trend of implementing the IPv6 into wireless sensor networks (WSNs) has recently occurred as a consequence of a tendency of their integration with other types of IP-based networks. The paper deals with the security aspects of these IPv6-based WSNs. A brief analysis of security threats and attacks which are present in the IPv6-based WSN is given. The solution to an adaptive distributed system for malicious node detection in the IPv6-based WSN is proposed. The proposed intrusion detection system is based on distributed algorithms and a collective decision-making process. It introduces an innovative concept of probability estimation for malicious behaviour of sensor nodes. The proposed system is implemented and tested through several different scenarios in three different network topologies. Finally, the performed analysis showed that the proposed system is energy efficient and has a good capability to detect malicious nodes.


2012 ◽  
Vol 562-564 ◽  
pp. 1234-1239
Author(s):  
Ming Xia ◽  
Qing Zhang Chen ◽  
Yan Jin

The beacon drifting problem occurs when the beacon nodes move accidentally after deployment. In this occasion, the localization results of sensor nodes in the network will be greatly affected and become inaccurate. In this paper, we present a localization algorithm in wireless sensor networks in beacon drifting scenarios. The algorithm first uses a probability density model to calculate the location reliability of each node, and in localization it will dynamically choose nodes with highest location reliabilities as beacon nodes to improve localization accuracy in beacon drifting scenarios. Simulation results show that the proposed algorithm achieves its design goals.


Tracking the location of target nodes/objects plays a vital role in disaster management and emergency rescue operations. The wireless sensor network is an easiest and cheapest solution to track the target nodes/objects in emergency applications. Use of GPS installed devices in wireless sensor networks is one of the solutions to track the target node’s location. Installing GPS device on every target node is very expensive and the GPS device drains the battery power, and increases the size of sensor nodes. Localization is an alternative solution to track the target node’s location. Many localization algorithms are available to track/estimate the target node’s location coordinates, but the accuracy of the estimated target nodes is poor. A new localization technique is proposed in this work to improve the accuracy of the estimated location of the target nodes. The proposed technique uses two anchor nodes, and parameters like linear vector segments, received signal strength, and angle of arrival measures in the location estimation process. This work has been simulated in MATLAB. The proposed algorithm outperforms the existing localization techniques.


2017 ◽  
Vol 13 (09) ◽  
pp. 69 ◽  
Author(s):  
Lianjun Yi ◽  
Miaochao Chen

<p>Wireless sensor networks (WSN), as a new method of information collection and processing, has a wide range of applications. Since the acquired data must be bound with the location information of sensor nodes, the sensor localization is one of the supporting technologies of wireless sensor networks. However, the common localization algorithms, such as APIT algorithm and DV-Hop algorithm, have the following problems: 1) the localization accuracy of beacon nodes is not high; 2) low coverage rate in sparse environment. In this paper, an enhanced hybrid 3D localization algorithm is designed with combining the advantages of APIT algorithm and DV-Hop algorithm. The proposed hybrid algorithm can improve the localization accuracy of the beacon nodes in dense environments by reducing the triangles in the triangle interior point test (PIT) and selecting good triangles. In addition, the algorithm can combine the advantages of APIT algorithm and DV-Hop algorithm localization algorithm to calculate the unknown node coordinates, and also improve the location coverage of the beacon nodes in sparse environment. Simulation results show that the proposed hybrid algorithm can effectively improve the localization accuracy of beacon nodes in the dense environment and the location coverage of beacon nodes in sparse environment.</p>


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4143 ◽  
Author(s):  
SungJin Yu ◽  
YoungHo Park

Wireless sensor networks (WSN) are composed of multiple sensor nodes with limited storage, computation, power, and communication capabilities and are widely used in various fields such as banks, hospitals, institutes to national defense, research, and so on. However, useful services are susceptible to security threats because sensitive data in various fields are exchanged via a public channel. Thus, secure authentication protocols are indispensable to provide various services in WSN. In 2019, Mo and Chen presented a lightweight secure user authentication scheme in WSN. We discover that Mo and Chen’s scheme suffers from various security flaws, such as session key exposure and masquerade attacks, and does not provide anonymity, untraceability, and mutual authentication. To resolve the security weaknesses of Mo and Chen’s scheme, we propose a secure and lightweight three-factor-based user authentication protocol for WSN, called SLUA-WSN. The proposed SLUA-WSN can prevent security threats and ensure anonymity, untraceability, and mutual authentication. We analyze the security of SLUA-WSN through the informal and formal analysis, including Burrows–Abadi–Needham (BAN) logic, Real-or-Random (ROR) model, and Automated Verification of Internet Security Protocols and Applications (AVISPA) simulation. Moreover, we compare the performance of SLUA-WSN with some existing schemes. The proposed SLUA-WSN better ensures the security and efficiency than previous proposed scheme and is suitable for practical WSN applications.


Sign in / Sign up

Export Citation Format

Share Document