scholarly journals Characteristics of Water Vapor in the UTLS over the Tibetan Plateau Based on AURA/MLS Observations

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Yi Sun ◽  
Quanliang Chen ◽  
Ke Gui ◽  
Fangyou Dong ◽  
Xiao Feng ◽  
...  

Water vapor (WV) has a vital effect on global climate change. Using satellite data observed by AURA/MLS and ERA-Interim reanalysis datasets, the spatial distributions and temporal variations of WV were analyzed. It was found that high WV content in the UTLS over the southern Tibetan Plateau is more apparent in summer, due to monsoon-induced strong upward motions. The WV content showed the opposite distribution at 100 hPa, though, during spring and winter. And a different distribution at 121 hPa indicated that the difference in WV content between the northern and southern plateau occurs between 121 and 100 hPa in spring and between 147 and 121 hPa in winter. In the UTLS, it diminishes rapidly with increase in altitude in these two seasons, and it shows a “V” structure in winter. There has been a weak increasing trend in WV at 100 hPa, but a downtrend at 147 and 215 hPa, during the past 12 years. At the latter two heights, the WV content in summer has been much higher than in other seasons. Furthermore, WV variation showed a rough wave structure in spring and autumn at 215 hPa. The variation of WV over the Tibetan Plateau is helpful in understanding the stratosphere-troposphere exchange (STE) and climate change.

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1962
Author(s):  
Zhilong Zhao ◽  
Yue Zhang ◽  
Zengzeng Hu ◽  
Xuanhua Nie

The alpine lakes on the Tibetan Plateau (TP) are indicators of climate change. The assessment of lake dynamics on the TP is an important component of global climate change research. With a focus on lakes in the 33° N zone of the central TP, this study investigates the temporal evolution patterns of the lake areas of different types of lakes, i.e., non-glacier-fed endorheic lakes and non-glacier-fed exorheic lakes, during 1988–2017, and examines their relationship with changes in climatic factors. From 1988 to 2017, two endorheic lakes (Lake Yagenco and Lake Zhamcomaqiong) in the study area expanded significantly, i.e., by more than 50%. Over the same period, two exorheic lakes within the study area also exhibited spatio-temporal variability: Lake Gaeencuonama increased by 5.48%, and the change in Lake Zhamuco was not significant. The 2000s was a period of rapid expansion of both the closed lakes (endorheic lakes) and open lakes (exorheic lakes) in the study area. However, the endorheic lakes maintained the increase in lake area after the period of rapid expansion, while the exorheic lakes decreased after significant expansion. During 1988–2017, the annual mean temperature significantly increased at a rate of 0.04 °C/a, while the annual precipitation slightly increased at a rate of 2.23 mm/a. Furthermore, the annual precipitation significantly increased at a rate of 14.28 mm/a during 1995–2008. The results of this study demonstrate that the change in precipitation was responsible for the observed changes in the lake areas of the two exorheic lakes within the study area, while the changes in the lake areas of the two endorheic lakes were more sensitive to the annual mean temperature between 1988 and 2017. Given the importance of lakes to the TP, these are not trivial issues, and we now need accelerated research based on long-term and continuous remote sensing data.


2020 ◽  
Author(s):  
Xiaoyan Yang ◽  
Juzhi Hou ◽  
Feixue San

Abstract Continental chemical weathering has been suggested to affect the concentration of atmospheric carbon dioxide that influences global climate change at different time scales. Various indices for chemical weathering have been adopted to investigate past change in chemical weathering intensity and climate change on oceanic and lacustrine sediment archives. The reliability of the chemical weathering indices has been questioned as most sediments likely originate from multiple types of bedrock that may experience various degrees of chemical weathering and can thus be reliably robust indicators of climate and paleoclimate. Here we present Sr-type (e.g. Rb/Sr Sr/Ba) and Na-type (e.g. CIA CIW PIA CPA) chemical weathering indices for top soils across the southern Tibetan Plateau to discuss the chemical weathering characteristic in the Tibetan Plateau and to examine their response to regional climate variation. The results of chemical indices and the A-CN-K ternary plot show that the southern Tibetan Plateau is under the carbonate control of the primary chemical weathering stage with the cold-dry climate. Correlation analyses show shat Sr-type indices co-vary with mean annual temperature and annual precipitation while Na-type indices show little consistence with regional climate. The climate condition is the dominant control of Sr-type indices of top soils in the study area and the bedrock may be the dominant control for the Na-type indices. We also compared the corresponding indices at a Holocene lacustrine sediment profile in the Qaidam Basin in the northeast Tibetan Plateau with regional climatic records which strongly supports our observation in the top soils. The results of the study suggest that for the relative cold and dry climate in Tibetan Plateau the Sr-type indices are more sensitive to climate condition than Na-type indices. This suggests that the Sr-type indices are likely more suitable than Na-type indices to reflect the change of climate on the Tibetan Plateau. Caution should be taken for using the Na-type indices for reconstructing the past change in climate for the study area.


2012 ◽  
Vol 29 (11) ◽  
pp. 1617-1628 ◽  
Author(s):  
Yuwei Zhang ◽  
Donghai Wang ◽  
Panmao Zhai ◽  
Guojun Gu

Abstract The research explores the applicability of the gridded (level 3) monthly tropospheric water vapor (version 5) retrievals from the Atmospheric Infrared Sounder (AIRS) instrument and the Advanced Microwave Sounding Unit (AMSU) on board the NASA Aqua satellite over the Tibetan Plateau by comparing them with carefully processed radiosonde data. Local correlation analyses indicate that below 200 hPa, the AIRS/AMSU monthly water vapor retrievals are highly consistent with radiosondes over the whole plateau region, especially in the southeastern part and between 300 and 600 hPa. Relative deviation analyses further show that the differences between monthly mean AIRS/AMSU water vapor retrieval data and radiosondes are, in general, small below 250 hPa, in particular between 300 and 600 hPa and in high-altitude areas. Combined with a further direct comparison between AIRS/AMSU water vapor vertical retrievals and radiosonde observations averaged over the entire domain, these results suggest that the gridded monthly AIRS/AMSU water vapor retrievals can provide a very good account of spatial patterns and temporal variations in tropospheric water vapor content in the Tibetan Plateau region, in particular below 200 hPa. However, differences between AIRS/AMSU retrievals and radiosondes are seen at various levels, in particular above the level of 250 hPa. Therefore, for detailed quantitative analyses of water budget in the atmosphere and the entire water cycle, AIRS/AMSU retrieval data may need to be corrected or trained using radiosondes. Two fitting functions are derived for warm and cold seasons, although the seasonal difference is generally small.


2021 ◽  
Vol 14 (5) ◽  
pp. 2827-2841
Author(s):  
Ziyu Huang ◽  
Lei Zhong ◽  
Yaoming Ma ◽  
Yunfei Fu

Abstract. Precipitation is the key component determining the water budget and climate change of the Tibetan Plateau (TP) under a warming climate. This high-latitude region is regarded as “the Third Pole” of the Earth and the “Asian Water Tower” and influences the eco-economy of downstream regions. However, the intensity and diurnal cycle of precipitation are inadequately depicted by current reanalysis products and regional climate models (RCMs). Spectral nudging is an effective dynamical downscaling method used to improve precipitation simulations of RCMs by preventing simulated fields from drifting away from large-scale reference fields, but the most effective manner of applying spectral nudging over the TP is unclear. In this paper, the effects of spectral nudging parameters (e.g., nudging variables, strengths, and levels) on summer precipitation simulations and associated meteorological variables were evaluated over the TP. The results show that using a conventional continuous integration method with a single initialization is likely to result in the over-forecasting of precipitation events and the over-forecasting of horizontal wind speeds over the TP. In particular, model simulations show clear improvements in their representations of downscaled precipitation intensity and its diurnal variations, atmospheric temperature, and water vapor when spectral nudging is applied towards the horizontal wind and geopotential height rather than towards the potential temperature and water vapor mixing ratio. This altering of the spectral nudging method not only reduces the wet bias of water vapor in the lower troposphere of the ERA-Interim reanalysis (when it is used as the driving field) but also alleviates the cold bias of atmospheric temperatures in the upper troposphere, while maintaining the accuracy of horizontal wind features for the regional model field. The conclusions of this study imply how driving field errors affect model simulations, and these results may improve the reliability of RCM results used to study the long-term regional climate change.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zhenchun Hao ◽  
Qin Ju ◽  
Weijuan Jiang ◽  
Changjun Zhu

The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) presents twenty-two global climate models (GCMs). In this paper, we evaluate the ability of 22 GCMs to reproduce temperature and precipitation over the Tibetan Plateau by comparing with ground observations for 1961~1900. The results suggest that all the GCMs underestimate surface air temperature and most models overestimate precipitation in most regions on the Tibetan Plateau. Only a few models (each 5 models for precipitation and temperature) appear roughly consistent with the observations in annual temperature and precipitation variations. Comparatively, GFCM21 and CGMR are able to better reproduce the observed annual temperature and precipitation variability over the Tibetan Plateau. Although the scenarios predicted by the GCMs vary greatly, all the models predict consistently increasing trends in temperature and precipitation in most regions in the Tibetan Plateau in the next 90 years. The results suggest that the temperature and precipitation will both increase in all three periods under different scenarios, with scenario A1 increasing the most and scenario A1B increasing the least.


2020 ◽  
Author(s):  
Yiru Jia

<p>The Tibetan plateau (QTP) has the highest average elevation in the world. As the third pole in the world, it has the largest cryosphere system at low and mid latitudes. It is a sensitive area of climate change, and the climate change is more significant. Global climate change has led to higher temperatures and increased rainfall on the Tibetan Plateau. This will lead to changes in the frequency and pattern of geological disasters. This spatiotemporal change and its influencing factors are not clear, so we collected a total of 898 geological disasters in the QTP from 1905 to 2015. Then we process the data to obtain various meteorological indicators of the QTP and combine them with the changes in the distribution of disaster points. Furthermore, the distribution pattern of the disaster points with the spatiotemporal changes of slope, altitude, precipitation and temperature is obtained. Statistics on the disaster data corresponding to each meteorological index are then made. Through the analysis of the distribution map and the statistical results of the data, the correlation between the occurrence of geological disasters and each element is obtained. The disaster points are superimposed with multiple influencing factors, and the influence of multiple factors on the distribution of geological hazards is discussed. The results showed that geological disasters have gradually expanded from the traditional high-incidence area of southern and eastern edges to the interior. The frequency of disasters in high altitude areas is increasing, and gradually extended from the rainy season to the non-rainy season.</p>


2021 ◽  
Author(s):  
Yunsen Lai ◽  
Shaoda Li ◽  
Yuehong Shi ◽  
Xinrui Luo ◽  
Liang Liu ◽  
...  

Abstract. Soil carbon isotopes (δ13C) provide reliable insights at a long-term scale for studying soil carbon turnover. The Tibetan Plateau (TP), called “the third pole of the earth” is one of the most sensitive areas to global climate change and exhibits an early warning signal of global warming. Although many studies detected the variability of soil δ13C at site scales, a knowledge gap still exists in the spatial pattern of topsoil δ13C across the TP. To fill the substantial knowledge gap, we first compiled a database of topsoil δ13C with 396 observations from published literatures. Then we applied a Random Forest (RF) algorithm – a machine learning approach, to predict the spatial pattern of topsoil δ13C and β (indicating the decomposition rate of soil organic carbon (SOC), calculated by δ13C divided by logarithmically converted SOC). Finally, two datasets – topsoil δ13C and β with a fine spatial resolution of 1 km across the TP were developed. Results showed that topsoil δ13C varied significantly among different ecosystem types (p < 0.001). Topsoil δ13C was −26.3 ± 1.60 ‰ (mean ± standard deviation) for forests, 24.3 ± 2.00 ‰ for shrublands, −23.9 ± 1.84 ‰ for grasslands, −18.9 ± 2.37 ‰ for deserts, respectively. RF could well predict the spatial variability of topsoil δ13C with a model efficiency of 0.62 and root mean square error of 1.12 ‰, enabling to derive data-driven δ13C and β products. Data-driven topsoil δ13C varied from −28.26 ‰ to −16.95 ‰, with the highest topsoil δ13C in the north and northwest TP and the lowest δ13C in Southeast or South TP, indicating strong spatial variabilities in topsoil δ13C. Similarly, there were strong spatial variabilities in data-driven β, with the lowest β values at the east and middle TP, indicating a higher SOC turnover in the east and middle TP compared that of other regions in the TP. This study was the first attempt to develop a fine resolution product of topsoil δ13C and β across the TP, which could provide an independent data-driven benchmark for biogeochemical cycling models to study SOC turnover and terrestrial carbon-climate feedbacks over the TP under climate change. The data-driven δ13C and β datasets are public available at https://doi.org/10.6084/m9.figshare.16641292.v2 (Tang, 2021).


Sign in / Sign up

Export Citation Format

Share Document