The evolution trend of geological disasters over spatial and temporal in the context of global warming —— taking the Qinghai-Tibet Plateau as an example

Author(s):  
Yiru Jia

<p>The Tibetan plateau (QTP) has the highest average elevation in the world. As the third pole in the world, it has the largest cryosphere system at low and mid latitudes. It is a sensitive area of climate change, and the climate change is more significant. Global climate change has led to higher temperatures and increased rainfall on the Tibetan Plateau. This will lead to changes in the frequency and pattern of geological disasters. This spatiotemporal change and its influencing factors are not clear, so we collected a total of 898 geological disasters in the QTP from 1905 to 2015. Then we process the data to obtain various meteorological indicators of the QTP and combine them with the changes in the distribution of disaster points. Furthermore, the distribution pattern of the disaster points with the spatiotemporal changes of slope, altitude, precipitation and temperature is obtained. Statistics on the disaster data corresponding to each meteorological index are then made. Through the analysis of the distribution map and the statistical results of the data, the correlation between the occurrence of geological disasters and each element is obtained. The disaster points are superimposed with multiple influencing factors, and the influence of multiple factors on the distribution of geological hazards is discussed. The results showed that geological disasters have gradually expanded from the traditional high-incidence area of southern and eastern edges to the interior. The frequency of disasters in high altitude areas is increasing, and gradually extended from the rainy season to the non-rainy season.</p>

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1962
Author(s):  
Zhilong Zhao ◽  
Yue Zhang ◽  
Zengzeng Hu ◽  
Xuanhua Nie

The alpine lakes on the Tibetan Plateau (TP) are indicators of climate change. The assessment of lake dynamics on the TP is an important component of global climate change research. With a focus on lakes in the 33° N zone of the central TP, this study investigates the temporal evolution patterns of the lake areas of different types of lakes, i.e., non-glacier-fed endorheic lakes and non-glacier-fed exorheic lakes, during 1988–2017, and examines their relationship with changes in climatic factors. From 1988 to 2017, two endorheic lakes (Lake Yagenco and Lake Zhamcomaqiong) in the study area expanded significantly, i.e., by more than 50%. Over the same period, two exorheic lakes within the study area also exhibited spatio-temporal variability: Lake Gaeencuonama increased by 5.48%, and the change in Lake Zhamuco was not significant. The 2000s was a period of rapid expansion of both the closed lakes (endorheic lakes) and open lakes (exorheic lakes) in the study area. However, the endorheic lakes maintained the increase in lake area after the period of rapid expansion, while the exorheic lakes decreased after significant expansion. During 1988–2017, the annual mean temperature significantly increased at a rate of 0.04 °C/a, while the annual precipitation slightly increased at a rate of 2.23 mm/a. Furthermore, the annual precipitation significantly increased at a rate of 14.28 mm/a during 1995–2008. The results of this study demonstrate that the change in precipitation was responsible for the observed changes in the lake areas of the two exorheic lakes within the study area, while the changes in the lake areas of the two endorheic lakes were more sensitive to the annual mean temperature between 1988 and 2017. Given the importance of lakes to the TP, these are not trivial issues, and we now need accelerated research based on long-term and continuous remote sensing data.


Ecosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ji Suonan ◽  
Aimée T. Classen ◽  
Nathan J. Sanders ◽  
Jin‐Sheng He

2013 ◽  
Vol 864-867 ◽  
pp. 2719-2724
Author(s):  
E Ping Song ◽  
Ke Xin Zhang ◽  
Sun Yi ◽  
Yan Qiu Lu ◽  
Han Lie Hong

The collision between India and Eurasia plate led to form the Tibet Plateau, which was the largest plateau over the world, and the disappearance of the Paleotethys.The collision between India and Eurasia plate in Cenozoic led to the Tibet Plateau form, which was the largest plateau over the world, and the disappearance of the Paleotethys. Then the continents and oceans re-adjusted their distribution, the global distribution of land and sea and ocean circulation system occurred significant adjustments, which had changed the entire global atmospheric circulation momentum, coupled with the corresponding evolution of the biosphere, it made the extreme instability of Cenozoic climate change to be the main theme of the global environment change.


The Tibetan Plateau is a unique feature of the Earth’s surface. Its elevation, 5 km above sea level, and a crust twice the normal thickness, have long been recognized as resultin g from the collision o f the Indian and Eurasian continents. The region is regarded as the prime example of collision tectonics. However, because Tibet was for long virtually inaccessible to geologists from the rest of the world, the mechanism by which the Plateau evolved and by which the crust was doubled in thickness, remained speculative. During the past two decades, Chinese geologists have explored and systematically mapped much of this vast and largely uninhabited region ; Academia Sinica mounted a series of geological expeditions. The results of this and other work were presented at an international symposium on the Qinghai—Xizang (Tibet) Plateau in Beijing in 1980 and demonstrated on a traverse through southern Tibet from Lhasa to Kathmandu .


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Yi Sun ◽  
Quanliang Chen ◽  
Ke Gui ◽  
Fangyou Dong ◽  
Xiao Feng ◽  
...  

Water vapor (WV) has a vital effect on global climate change. Using satellite data observed by AURA/MLS and ERA-Interim reanalysis datasets, the spatial distributions and temporal variations of WV were analyzed. It was found that high WV content in the UTLS over the southern Tibetan Plateau is more apparent in summer, due to monsoon-induced strong upward motions. The WV content showed the opposite distribution at 100 hPa, though, during spring and winter. And a different distribution at 121 hPa indicated that the difference in WV content between the northern and southern plateau occurs between 121 and 100 hPa in spring and between 147 and 121 hPa in winter. In the UTLS, it diminishes rapidly with increase in altitude in these two seasons, and it shows a “V” structure in winter. There has been a weak increasing trend in WV at 100 hPa, but a downtrend at 147 and 215 hPa, during the past 12 years. At the latter two heights, the WV content in summer has been much higher than in other seasons. Furthermore, WV variation showed a rough wave structure in spring and autumn at 215 hPa. The variation of WV over the Tibetan Plateau is helpful in understanding the stratosphere-troposphere exchange (STE) and climate change.


2020 ◽  
Author(s):  
Eryuan Liang ◽  
Xiaoming Lu ◽  
Yafeng Wang ◽  
Flurin Babst ◽  
Steven W. Leavitt ◽  
...  

<p>Alpine biomes are climate change hotspots, and treeline dynamics in particular have received much attention as visible evidence of climate-induced shifts in species distributions. Comparatively little is known, however, about the effects of climate change on alpine shrubline dynamics. Here, we reconstruct decadally resolved shrub recruitment history (age structure) through the combination of field surveys and dendroecology methods at the world’s highest juniper (Juniperus pingii var. wilsonii) shrublines on the south-central Tibetan Plateau. A total of 1,899 shrubs were surveyed at 12 plots located in four regions along an east-to-west declining precipitation gradient. We detected synchronous recruitment with 9 out of 12 plots showing a gradual increase from 1600 to 1900, a peak at 1900–1940, and a subsequent decrease from the 1930s onward. Shrub recruitment was significantly and positively correlated with reconstructed summer temperature from 1600 to 1940, whereas it was negatively associated with temperature in recent decades (1930–2000). Recruitment was also positively correlated with precipitation, except in the 1780–1830 period, when a trend toward wetter climate conditions began. This apparent tipping point in recruitment success coincides with a switch from positive to negative impacts of rising temperatures.  Warming-induced drought limitation has likely reduced the recruitment potential of alpine juniper shrubs in recent decades. Continued warming is thus expected to further alter the dynamics of alpine shrublines on the Tibetan Plateau and elsewhere.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zhenchun Hao ◽  
Qin Ju ◽  
Weijuan Jiang ◽  
Changjun Zhu

The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) presents twenty-two global climate models (GCMs). In this paper, we evaluate the ability of 22 GCMs to reproduce temperature and precipitation over the Tibetan Plateau by comparing with ground observations for 1961~1900. The results suggest that all the GCMs underestimate surface air temperature and most models overestimate precipitation in most regions on the Tibetan Plateau. Only a few models (each 5 models for precipitation and temperature) appear roughly consistent with the observations in annual temperature and precipitation variations. Comparatively, GFCM21 and CGMR are able to better reproduce the observed annual temperature and precipitation variability over the Tibetan Plateau. Although the scenarios predicted by the GCMs vary greatly, all the models predict consistently increasing trends in temperature and precipitation in most regions in the Tibetan Plateau in the next 90 years. The results suggest that the temperature and precipitation will both increase in all three periods under different scenarios, with scenario A1 increasing the most and scenario A1B increasing the least.


2021 ◽  
Author(s):  
Yunsen Lai ◽  
Shaoda Li ◽  
Yuehong Shi ◽  
Xinrui Luo ◽  
Liang Liu ◽  
...  

Abstract. Soil carbon isotopes (δ13C) provide reliable insights at a long-term scale for studying soil carbon turnover. The Tibetan Plateau (TP), called “the third pole of the earth” is one of the most sensitive areas to global climate change and exhibits an early warning signal of global warming. Although many studies detected the variability of soil δ13C at site scales, a knowledge gap still exists in the spatial pattern of topsoil δ13C across the TP. To fill the substantial knowledge gap, we first compiled a database of topsoil δ13C with 396 observations from published literatures. Then we applied a Random Forest (RF) algorithm – a machine learning approach, to predict the spatial pattern of topsoil δ13C and β (indicating the decomposition rate of soil organic carbon (SOC), calculated by δ13C divided by logarithmically converted SOC). Finally, two datasets – topsoil δ13C and β with a fine spatial resolution of 1 km across the TP were developed. Results showed that topsoil δ13C varied significantly among different ecosystem types (p < 0.001). Topsoil δ13C was −26.3 ± 1.60 ‰ (mean ± standard deviation) for forests, 24.3 ± 2.00 ‰ for shrublands, −23.9 ± 1.84 ‰ for grasslands, −18.9 ± 2.37 ‰ for deserts, respectively. RF could well predict the spatial variability of topsoil δ13C with a model efficiency of 0.62 and root mean square error of 1.12 ‰, enabling to derive data-driven δ13C and β products. Data-driven topsoil δ13C varied from −28.26 ‰ to −16.95 ‰, with the highest topsoil δ13C in the north and northwest TP and the lowest δ13C in Southeast or South TP, indicating strong spatial variabilities in topsoil δ13C. Similarly, there were strong spatial variabilities in data-driven β, with the lowest β values at the east and middle TP, indicating a higher SOC turnover in the east and middle TP compared that of other regions in the TP. This study was the first attempt to develop a fine resolution product of topsoil δ13C and β across the TP, which could provide an independent data-driven benchmark for biogeochemical cycling models to study SOC turnover and terrestrial carbon-climate feedbacks over the TP under climate change. The data-driven δ13C and β datasets are public available at https://doi.org/10.6084/m9.figshare.16641292.v2 (Tang, 2021).


Sign in / Sign up

Export Citation Format

Share Document