scholarly journals Three-Class Mammogram Classification Based on Descriptive CNN Features

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
M. Mohsin Jadoon ◽  
Qianni Zhang ◽  
Ihsan Ul Haq ◽  
Sharjeel Butt ◽  
Adeel Jadoon

In this paper, a novel classification technique for large data set of mammograms using a deep learning method is proposed. The proposed model targets a three-class classification study (normal, malignant, and benign cases). In our model we have presented two methods, namely, convolutional neural network-discrete wavelet (CNN-DW) and convolutional neural network-curvelet transform (CNN-CT). An augmented data set is generated by using mammogram patches. To enhance the contrast of mammogram images, the data set is filtered by contrast limited adaptive histogram equalization (CLAHE). In the CNN-DW method, enhanced mammogram images are decomposed as its four subbands by means of two-dimensional discrete wavelet transform (2D-DWT), while in the second method discrete curvelet transform (DCT) is used. In both methods, dense scale invariant feature (DSIFT) for all subbands is extracted. Input data matrix containing these subband features of all the mammogram patches is created that is processed as input to convolutional neural network (CNN). Softmax layer and support vector machine (SVM) layer are used to train CNN for classification. Proposed methods have been compared with existing methods in terms of accuracy rate, error rate, and various validation assessment measures. CNN-DW and CNN-CT have achieved accuracy rate of 81.83% and 83.74%, respectively. Simulation results clearly validate the significance and impact of our proposed model as compared to other well-known existing techniques.

Author(s):  
Zhixian Chen ◽  
Jialin Tang ◽  
Xueyuan Gong ◽  
Qinglang Su

In order to improve the low accuracy of the face recognition methods in the case of e-health, this paper proposed a novel face recognition approach, which is based on convolutional neural network (CNN). In detail, through resolving the convolutional kernel, rectified linear unit (ReLU) activation function, dropout, and batch normalization, this novel approach reduces the number of parameters of the CNN model, improves the non-linearity of the CNN model, and alleviates overfitting of the CNN model. In these ways, the accuracy of face recognition is increased. In the experiments, the proposed approach is compared with principal component analysis (PCA) and support vector machine (SVM) on ORL, Cohn-Kanade, and extended Yale-B face recognition data set, and it proves that this approach is promising.


Information ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 193 ◽  
Author(s):  
Zihao Huang ◽  
Gang Huang ◽  
Zhijun Chen ◽  
Chaozhong Wu ◽  
Xiaofeng Ma ◽  
...  

With the development of online cars, the demand for travel prediction is increasing in order to reduce the information asymmetry between passengers and drivers of online car-hailing. This paper proposes a travel demand forecasting model named OC-CNN based on the convolutional neural network to forecast the travel demand. In order to make full use of the spatial characteristics of the travel demand distribution, this paper meshes the prediction area and creates a travel demand data set of the graphical structure to preserve its spatial properties. Taking advantage of the convolutional neural network in image feature extraction, the historical demand data of the first twenty-five minutes of the entire region are used as a model input to predict the travel demand for the next five minutes. In order to verify the performance of the proposed method, one-month data from online car-hailing of the Chengdu Fourth Ring Road are used. The results show that the model successfully extracts the spatiotemporal features of the data, and the prediction accuracies of the proposed method are superior to those of the representative methods, including the Bayesian Ridge Model, Linear Regression, Support Vector Regression, and Long Short-Term Memory networks.


2020 ◽  
Vol 37 (6) ◽  
pp. 1093-1101
Author(s):  
Divakar Yadav ◽  
Akanksha ◽  
Arun Kumar Yadav

Plants have a great role to play in biodiversity sustenance. These natural products not only push their demand for agricultural productivity, but also for the manufacturing of medical products, cosmetics and many more. Apple is one of the fruits that is known for its excellent nutritional properties and is therefore recommended for daily intake. However, due to various diseases in apple plants, farmers have to suffer from a huge loss. This not only causes severe effects on fruit’s health, but also decreases its overall productivity, quantity, and quality. A novel convolutional neural network (CNN) based model for recognition and classification of apple leaf diseases is proposed in this paper. The proposed model applies contrast stretching based pre-processing technique and fuzzy c-means (FCM) clustering algorithm for the identification of plant diseases. These techniques help to improve the accuracy of CNN model even with lesser size of dataset. 400 image samples (200 healthy, 200 diseased) of apple leaves have been used to train and validate the performance of the proposed model. The proposed model achieved an accuracy of 98%. To achieve this accuracy, it uses lesser data-set size as compared to other existing models, without compromising with the performance, which become possible due to use of contrast stretching pre-processing combined with FCM clustering algorithm.


Author(s):  
Pranav Kale ◽  
Mayuresh Panchpor ◽  
Saloni Dingore ◽  
Saloni Gaikwad ◽  
Prof. Dr. Laxmi Bewoor

In today's world, deep learning fields are getting boosted with increasing speed. Lot of innovations and different algorithms are being developed. In field of computer vision, related to autonomous driving sector, traffic signs play an important role to provide real time data of an environment. Different algorithms were developed to classify these Signs. But performance still needs to improve for real time environment. Even the computational power required to train such model is high. In this paper, Convolutional Neural Network model is used to Classify Traffic Sign. The experiments are conducted on a real-world data set with images and videos captured from ordinary car driving as well as on GTSRB dataset [15] available on Kaggle. This proposed model is able to outperform previous models and resulted with accuracy of 99.6% on validation set. This idea has been granted Innovation Patent by Australian IP to Authors of this Research Paper. [24]


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Dong Liu ◽  
Xu Lai ◽  
Zhihuai Xiao ◽  
Dong Liu ◽  
Xiao Hu ◽  
...  

Vibration signal and shaft orbit are important features that reflect the operating state of rotating machinery. Fault diagnosis and feature extraction are critical to ensure the safety and reliable operation of rotating machinery. A novel method of fault diagnosis based on convolutional neural network (CNN), discrete wavelet transform (DWT), and singular value decomposition (SVD) is proposed in this paper. CNN is used to extract features of shaft orbit images, DWT is used to transform the denoised swing signal of rotating machinery, and the wavelet decomposition coefficients of each branch of the signal are obtained by the transformation. The SVD input matrix is formed after single branch reconstruction of the different branch coefficients, and the singular value is extracted to obtain the feature vector. The features extracted from both methods are combined and then classified by support vector machines (SVMs). The comparison results show that this hybrid method has a higher recognition rate than other methods.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
R. Hadapiningradja Kusumodestoni ◽  
Sarwido Sarwido

There are many types of investments to make money, one of which is in the form of shares. Shares is a trading company dealing with securities in the global capital markets. Stock Exchange or also called stock market is actually the activities of private companies in the form of buying and selling investments. To avoid losses in investing, we need a model of predictive analysis with high accuracy and supported by data - lots of data and accurately. The correct techniques in the analysis will be able to reduce the risk for investors in investing. There are many models used in the analysis of stock price movement prediction, in this study the researchers used models of neural networks (NN) and a model of support vector machine (SVM). Based on the background of the problems that have been mentioned in the previous description it can be formulated the problem as follows: need an algorithm that can predict stock prices, and need a high accuracy rate by adding a data set on the prediction, two algorithms will be investigated expected results last researchers can deduce where the algorithm accuracy rate predictions are the highest or accurate, then the purpose of this study was to mengkomparasi or compare between the two algorithms are algorithms Neural Network algorithm and Support Vector Machine which later on the end result has an accuracy rate forecast stock prices highest to see the error value RMSEnya. After doing research using the model of neural network and model of support vector machine (SVM) to predict the stock using the data value of the shares on the stock index hongkong dated July 20, 2016 at 16:26 pm until the date of 15 September 2016 at 17:40 pm as many as 729 data sets within an interval of 5 minute through a process of training, learning, and then continue the process of testing so the result is that by using a neural network model of the prediction accuracy of 0.503 +/- 0.009 (micro 503) while using the model of support vector machine (SVM) accuracy of the predictions for 0477 + / - 0.008 (micro: 0477) so that after a comparison can be concluded that the neural network models have trend prediction accuracy higher than the model of support vector machine (SVM).


Author(s):  
Kinjal V. Joshi ◽  
Narendra M. Patel

Automatic abnormal event detection in a surveillance scene is very significant because of more consciousness about public safety. Because of usefulness and complexity, currently, it is an open research area. In this manuscript, the authors have proposed a novel convolutional neural network (CNN) model to detect an abnormal event in a surveillance scene. In this work, CNN is used in two ways. Firstly, it is used for both feature extraction and classification. In a second way, CNN is used for feature extraction, and support vector machine (SVM) is used for classification. Without any pre-processing, the proposed model gives better results compared to state-of-the-art methods. Experiments are carried out on four different publicly available benchmark datasets and one combined dataset, which contains all images of four datasets. The performance is measured by accuracy and area under the ROC (receiver operating characteristic) curve (AUC). The experimental results determine the efficacy of the proposed model.


Author(s):  
Keke Zhang ◽  
Lei Zhang ◽  
Qiufeng Wu

The cherry leaves infected by Podosphaera pannosa will suffer powdery mildew, which is a serious disease threatening the cherry production industry. In order to identify the diseased cherry leaves in early stage, the authors formulate the cherry leaf disease infected identification as a classification problem and propose a fully automatic identification method based on convolutional neural network (CNN). The GoogLeNet is used as backbone of the CNN. Then, transferred learning techniques are applied to fine-tune the CNN from pre-trained GoogLeNet on ImageNet dataset. This article compares the proposed method against three traditional machine learning methods i.e., support vector machine (SVM), k-nearest neighbor (KNN) and back propagation (BP) neural network. Quantitative evaluations conducted on a data set of 1,200 images collected by smart phones, demonstrates that the CNN achieves best precise performance in identifying diseased cherry leaves, with the testing accuracy of 99.6%. Thus, a CNN can be used effectively in identifying the diseased cherry leaves.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3608
Author(s):  
Chiao-Sheng Wang ◽  
I-Hsi Kao ◽  
Jau-Woei Perng

The early diagnosis of a motor is important. Many researchers have used deep learning to diagnose motor applications. This paper proposes a one-dimensional convolutional neural network for the diagnosis of permanent magnet synchronous motors. The one-dimensional convolutional neural network model is weakly supervised and consists of multiple convolutional feature-extraction modules. Through the analysis of the torque and current signals of the motors, the motors can be diagnosed under a wide range of speeds, variable loads, and eccentricity effects. The advantage of the proposed method is that the feature-extraction modules can extract multiscale features from complex conditions. The number of training parameters was reduced so as to solve the overfitting problem. Furthermore, the class feature map was proposed to automatically determine the frequency component that contributes to the classification using the weak learning method. The experimental results reveal that the proposed model can effectively diagnose three different motor states—healthy state, demagnetization fault state, and bearing fault state. In addition, the model can detect eccentric effects. By combining the current and torque features, the classification accuracy of the proposed model is up to 98.85%, which is higher than that of classical machine-learning methods such as the k-nearest neighbor and support vector machine.


Author(s):  
R. Niessner ◽  
H. Schilling ◽  
B. Jutzi

In recent years, there has been a significant improvement in the detection, identification and classification of objects and images using Convolutional Neural Networks. To study the potential of the Convolutional Neural Network, in this paper three approaches are investigated to train classifiers based on Convolutional Neural Networks. These approaches allow Convolutional Neural Networks to be trained on datasets containing only a few hundred training samples, which results in a successful classification. Two of these approaches are based on the concept of transfer learning. In the first approach features, created by a pretrained Convolutional Neural Network, are used for a classification using a support vector machine. In the second approach a pretrained Convolutional Neural Network gets fine-tuned on a different data set. The third approach includes the design and training for flat Convolutional Neural Networks from the scratch. The evaluation of the proposed approaches is based on a data set provided by the IEEE Geoscience and Remote Sensing Society (GRSS) which contains RGB and LiDAR data of an urban area. In this work it is shown that these Convolutional Neural Networks lead to classification results with high accuracy both on RGB and LiDAR data. Features which are derived by RGB data transferred into LiDAR data by transfer learning lead to better results in classification in contrast to RGB data. Using a neural network which contains fewer layers than common neural networks leads to the best classification results. In this framework, it can furthermore be shown that the practical application of LiDAR images results in a better data basis for classification of vehicles than the use of RGB images.


Sign in / Sign up

Export Citation Format

Share Document