scholarly journals De Novo Human Cardiac Myocytes for Medical Research: Promises and Challenges

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Veronique Hamel ◽  
Kang Cheng ◽  
Shudan Liao ◽  
Aizhu Lu ◽  
Yong Zheng ◽  
...  

The advent of cellular reprogramming technology has revolutionized biomedical research. De novo human cardiac myocytes can now be obtained from direct reprogramming of somatic cells (such as fibroblasts), from induced pluripotent stem cells (iPSCs, which are reprogrammed from somatic cells), and from human embryonic stem cells (hESCs). Such de novo human cardiac myocytes hold great promise for in vitro disease modeling and drug screening and in vivo cell therapy of heart disease. Here, we review the technique advancements for generating de novo human cardiac myocytes. We also discuss several challenges for the use of such cells in research and regenerative medicine, such as the immature phenotype and heterogeneity of de novo cardiac myocytes obtained with existing protocols. We focus on the recent advancements in addressing such challenges.

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Mohsin Khan ◽  
Suresh K Verma ◽  
Alexander R Mackie ◽  
Erin Vaughan ◽  
Srikanth Garikipati ◽  
...  

Rationale: Embryonic stem cells (ESCs) hold great promise for cardiac regeneration but are susceptible to ethical concerns, lack of autologous donors and teratoma formation. Recently, it has been observed that beneficial effects of stem cells are mediated by exosomes secreted out under various physiological conditions. ESCs have the ability to produce exosomes however their effect in the context of the heart is unknown. Objective: Determine the effect of ESC derived exosomes for cardiac repair and modulation of CPCs functions in the heart following myocardial infarction. Methods and Results: Exosomes were isolated from murine ESCs (mES Ex) or embryonic fibroblasts (MEFs) by ultracentrifugation and verified by Flotillin-1 immunoblot analysis. Induction of pluripotent markers, survival and in vitro tube formation was enhanced in target cells receiving ESC exosomes indicating therapeutic potential of mES Ex. mES Ex administration resulted in enhanced neovascularization, cardiomyocyte survival and reduced fibrosis post infarction consistent with resurgence of cardiac proliferative response. Importantly, mES Ex mediated considerable enhancement of cardiac progenitor cell (CPC) survival, proliferation and cardiac commitment concurrent with increased c-kit+ CPCs in vivo 4 weeks after mES Ex transfer. miRNA Array analysis of ESC and MEF exosomes revealed significantly high expression of miR290-295 cluster in the ESC exosomes compared to MEF exosomes. The underlying beneficial effect of mES Ex was tied to delivery of ESC miR-294 to the heart and in particular CPCs thereby promoting CPC survival and proliferation as analyzed by FACS based cell death analysis and CyQuant assay respectively. Interestingly, enhanced G1/S transition was observed in CPCs treated with miR-294 in conjunction with significant reduction of G1 phase. Conclusion: In conclusion, mES Ex provide a novel cell free system for cardiac regeneration with the ability to modulate both cardiomyocyte and CPC based repair programs in the heart thereby avoiding the risk of teratoma formation associated with ESCs.


Author(s):  
Hao Xu ◽  
Liying Wu ◽  
Guojia Yuan ◽  
Xiaolu Liang ◽  
Xiaoguang Liu ◽  
...  

: Hepatic disease negatively impacts liver function and metabolism. Primary human hepatocytes are the gold standard for the prediction and successful treatment of liver disease. However, the sources of hepatocytes for drug toxicity testing and disease modeling are limited. To overcome this issue, pluripotent stem cells (PSCs) have emerged as an alternative strategy for liver disease therapy. Human PSCs, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) can self-renew and give rise to all cells of the body. Human PSCs are attractive cell sources for regenerative medicine, tissue engineering, drug discovery, and developmental studies. Several recent studies have shown that mesenchymal stem cells (MSCs) can also differentiate (or trans-differentiate) into hepatocytes. Differentiation of human PSCs and MSCs into functional hepatocyte-like cells (HLCs) opens new strategies to study genetic diseases, hepatotoxicity, infection of hepatotropic viruses, and analyze hepatic biology. Numerous in vitro and in vivo differentiation protocols have been established to obtain human PSCs/MSCs-derived HLCs and mimic their characteristics. It was recently discovered that microRNAs (miRNAs) play a critical role in controlling the ectopic expression of transcription factors and governing the hepatocyte differentiation of human PSCs and MSCs. In this review, we focused on the role of miRNAs in the differentiation of human PSCs and MSCs into hepatocytes.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1614
Author(s):  
Paulina Podkalicka ◽  
Jacek Stępniewski ◽  
Olga Mucha ◽  
Neli Kachamakova-Trojanowska ◽  
Józef Dulak ◽  
...  

Inadequate supply of oxygen (O2) is a hallmark of many diseases, in particular those related to the cardiovascular system. On the other hand, tissue hypoxia is an important factor regulating (normal) embryogenesis and differentiation of stem cells at the early stages of embryonic development. In culture, hypoxic conditions may facilitate the derivation of embryonic stem cells (ESCs) and the generation of induced pluripotent stem cells (iPSCs), which may serve as a valuable tool for disease modeling. Endothelial cells (ECs), multifunctional components of vascular structures, may be obtained from iPSCs and subsequently used in various (hypoxia-related) disease models to investigate vascular dysfunctions. Although iPSC-ECs demonstrated functionality in vitro and in vivo, ongoing studies are conducted to increase the efficiency of differentiation and to establish the most productive protocols for the application of patient-derived cells in clinics. In this review, we highlight recent discoveries on the role of hypoxia in the derivation of ESCs and the generation of iPSCs. We also summarize the existing protocols of hypoxia-driven differentiation of iPSCs toward ECs and discuss their possible applications in disease modeling and treatment of hypoxia-related disorders.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 835
Author(s):  
Carmen Caiazza ◽  
Silvia Parisi ◽  
Massimiliano Caiazzo

Liver organoids are stem cell-derived 3D structures that are generated by liver differentiation signals in the presence of a supporting extracellular matrix. Liver organoids overcome low complexity grade of bidimensional culture and high costs of in vivo models thus representing a turning point for studying liver disease modeling. Liver organoids can be established from different sources as induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), hepatoblasts and tissue-derived cells. This novel in vitro system represents an innovative tool to deeper understand the physiology and pathological mechanisms affecting the liver. In this review, we discuss the current advances in the field focusing on their application in modeling diseases, regenerative medicine and drug discovery.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2641-2648 ◽  
Author(s):  
Linda T. Vo ◽  
George Q. Daley

Abstract Generating human hematopoietic stem cells (HSCs) from autologous tissues, when coupled with genome editing technologies, is a promising approach for cellular transplantation therapy and for in vitro disease modeling, drug discovery, and toxicology studies. Human pluripotent stem cells (hPSCs) represent a potentially inexhaustible supply of autologous tissue; however, to date, directed differentiation from hPSCs has yielded hematopoietic cells that lack robust and sustained multilineage potential. Cellular reprogramming technologies represent an alternative platform for the de novo generation of HSCs via direct conversion from heterologous cell types. In this review, we discuss the latest advancements in HSC generation by directed differentiation from hPSCs or direct conversion from somatic cells, and highlight their applications in research and prospects for therapy.


2017 ◽  
Author(s):  
Prashanth Kumar Guthikonda ◽  
Sumitha Prameela Bharathan ◽  
Janakiram Rayabaram ◽  
Trinadha Rao Sornapudi ◽  
Sailu Yellaboina ◽  
...  

AbstractFactor induced pluripotent stem cells (iPSCs) offer great promise in regenerative medicine. However, accumulating evidence suggests that iPSCs are heterogeneous in comparison with embryonic stem cells (ESCs), and that is attributed to various genetic and epigenetic states of donor cells. In the light of the discovery of cell-type specialized ribosomal protein composition, its role as the cells transit through different stages of reprogramming and when iPSCs differentiate into specialized cell-types has not been explored to understand its influence in the reprogramming and differentiation process and outcome. By re-analyzing the publicly available gene expression datasets among ESCs, various sources of iPSCs and somatic cells and by studying the ribosomal protein gene expression during different stages of reprogramming of somatic cells and different passages of established iPSCs we found distinct patterns of their expression across multiple cell-types. We experimentally validated these results on the cells undergoing reprogramming from human dermal fibroblasts. Finally, by comparing publicly available data from iPSCs, iPSCs derived specialized cells and it’s in vivo counterparts, we show alterations in ribosomal gene expression during differentiation of specialized cells from iPSCs which may have Implications in the context of ribosomopathies. Our results provide an informatics framework for researchers in efficient generation of iPSCs that are equivalent to ESCs.


2019 ◽  
Vol 20 (22) ◽  
pp. 5752 ◽  
Author(s):  
Heng Liang Tan ◽  
Andre Choo

Pluripotent stem cells (PSCs) comprise both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). The application of pluripotent stem cells is divided into four main areas, namely: (i) regenerative therapy, (ii) the study and understanding of developmental biology, (iii) drug screening and toxicology and (iv) disease modeling. In this review, we describe a new opportunity for PSCs, the discovery of new biomarkers and generating antibodies against these biomarkers. PSCs are good sources of immunogen for raising monoclonal antibodies (mAbs) because of the conservation of oncofetal antigens between PSCs and cancer cells. Hence mAbs generated using PSCs can potentially be applied in two different fields. First, these mAbs can be used in regenerative cell therapy to characterize the PSCs. In addition, the mAbs can be used to separate or eliminate contaminating or residual undifferentiated PSCs from the differentiated cell product. This step is critical as undifferentiated PSCs can form teratomas in vivo. The mAbs generated against PSCs can also be used in the field of oncology. Here, novel targets can be identified and the mAbs developed as targeted therapy to kill the cancer cells. Conversely, as new and novel oncofetal biomarkers are discovered on PSCs, cancer mAbs that are already approved by the FDA can be repurposed for regenerative medicine, thus expediting the route to the clinics.


2021 ◽  
Vol 22 (17) ◽  
pp. 9517
Author(s):  
Gianluca Testa ◽  
Giorgia Di Benedetto ◽  
Fabiana Passaro

The adult human heart can only adapt to heart diseases by starting a myocardial remodeling process to compensate for the loss of functional cardiomyocytes, which ultimately develop into heart failure. In recent decades, the evolution of new strategies to regenerate the injured myocardium based on cellular reprogramming represents a revolutionary new paradigm for cardiac repair by targeting some key signaling molecules governing cardiac cell fate plasticity. While the indirect reprogramming routes require an in vitro engineered 3D tissue to be transplanted in vivo, the direct cardiac reprogramming would allow the administration of reprogramming factors directly in situ, thus holding great potential as in vivo treatment for clinical applications. In this framework, cellular reprogramming in partnership with nanotechnologies and bioengineering will offer new perspectives in the field of cardiovascular research for disease modeling, drug screening, and tissue engineering applications. In this review, we will summarize the recent progress in developing innovative therapeutic strategies based on manipulating cardiac cell fate plasticity in combination with bioengineering and nanotechnology-based approaches for targeting the failing heart.


Blood ◽  
2013 ◽  
Vol 122 (25) ◽  
pp. 4035-4046 ◽  
Author(s):  
Igor I. Slukvin

Abstract Significant advances in cellular reprogramming technologies and hematopoietic differentiation from human pluripotent stem cells (hPSCs) have already enabled the routine production of multiple lineages of blood cells in vitro and opened novel opportunities to study hematopoietic development, model genetic blood diseases, and manufacture immunologically matched cells for transfusion and cancer immunotherapy. However, the generation of hematopoietic cells with robust and sustained multilineage engraftment has not been achieved. Here, we highlight the recent advances in understanding the molecular and cellular pathways leading to blood development from hPSCs and discuss potential approaches that can be taken to facilitate the development of technologies for de novo production of hematopoietic stem cells.


Sign in / Sign up

Export Citation Format

Share Document