scholarly journals Effect of Equal Channel Angular Pressing on the Surface Roughness of Solid State Recycled Aluminum Alloy 6061 Chips

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Adel Taha Abbas ◽  
Mohamed Adel Taha ◽  
Adham Ezzat Ragab ◽  
Ehab Adel El-Danaf ◽  
Mohamed Ibrahim Abd El Aal

Solid state recycling through hot extrusion is a promising technique to recycle machining chips without remelting. Furthermore, equal channel angular pressing (ECAP) technique coupled with the extruded recycled billet is introduced to enhance the mechanical properties of recycled samples. In this paper, the surface roughness of solid state recycled aluminum alloy 6061 turning chips was investigated. Aluminum chips were cold compacted and hot extruded under an extrusion ratio (ER) of 5.2 at an extrusion temperature (ET) of 425°C. In order to improve the properties of the extruded samples, they were subjected to ECAP up to three passes at room temperature using an ECAP die with a channel die angle(Φ)of 90°. Surface roughness (RaandRz) of the processed recycled billets machined by turning was investigated. Box-Behnken experimental design was used to investigate the effect of three machining parameters (cutting speed, feed rate, and depth of cut) on the surface roughness of the machined specimens for four materials conditions, namely, extruded billet and postextrusion ECAP processed billets to one, two, and three passes. Quadratic models were developed to relate the machining parameters to surface roughness, and a multiobjective optimization scheme was conducted to maximize material removal rate while maintaining the roughness below a preset practical value.

2011 ◽  
Vol 63-64 ◽  
pp. 412-415 ◽  
Author(s):  
Yu Mei Liu ◽  
Zhao Liang Jiang ◽  
Zhi Li

The surface roughness is difficult to estimate in machining, especially for weak stiffness workpiece. So, prediction model of surface roughness using artificial neural network (ANN) is developed. This model investigates the effects of cutting parameters during milling Aluminum alloy 6061. The experiments are planned with four factors and four levels for developing the knowledge base for ANN training. Three-dimensional surface plots are generated using ANN model to study the effects of cutting parameters on surface roughness. The analysis reveals that cutting speed and feed rate have significant effects in reducing the surface roughness, while the axial and radial depth of cut has less effect. And the variations of surface roughness are highly non-linear with the cutting parameters.


2017 ◽  
Vol 9 (10) ◽  
pp. 168781401773415 ◽  
Author(s):  
Adham Ezzat Ragab ◽  
Mohamed Adel Taha ◽  
Adel Taha Abbas ◽  
Essam Ali Al Bahkali ◽  
Ehab Adel El-Danaf ◽  
...  

Author(s):  
M. Sobron Yamin Lubis ◽  
Abrar Riza ◽  
Dani Putra Agung

Aluminum Alloy metal is widely used in making lightweight construction on machinery. To produce a flat metal alluminium alloy surface, a shearing machine is needed. There are two types of aluminum materials that are commonly used, namely Aluminum 6061 and 7075. In the process of forming metals using a scrap machine, it is important to determine the machining parameters because this is closely related to the surface conditions of the workpiece produced. Difficulties in determining the appropriate combination of machining parameters often result in work surface conditions that are not as expected or have a high roughness. With the right parameters, the quality of surface roughness can be predicted as planned before the machining process. The cutting parameters are cutting speed and cutting depth. In this study the cutting speed used varied, namely 4.68 m / min, 7.30 m / min, 11.70 m / min, 18.29 m / min with a cutting depth of 0.50 mm, 1.00 mm and 1 , 50 mm, to cut aluminum 6061 and 7075 using the HSS chisel. In the initial step, do the machine tool settings, place the chisel on the chisel holder, place the workpiece in vise, adjust the cutting speed, depth of feed, and perform machining. After machining, a surface roughness measurement is carried out using a surface test. From the results of the study it was found that the value of surface roughness is directly proportional to the depth of cut. The value of surface roughness is inversely proportional to cutting speed and hardness of the material. Determination of cutting speed through empirical equations based on surface roughness: aluminum alloy 6061 is: Ra = 23,366e-0,146Vc (µm) and aluminum alloy 7075 are: Ra = 13,482e-0.109Vc (µm). ABSTRAK Bahan logam aluminium Alloy banyak digunakan dalam pembuatan konstruksi ringan pada mesin-mesin. Untuk menghasilkan permukaan logam alluminium alloy yang rata, maka diperlukan mesin sekrap. Terdapat dua jenis material aluminium yang umum digunakan yaitu Aluminium 6061 dan 7075. Pada proses pembentukan logam dengan menggunakan mesin sekrap, adalah penting untuk menentukan parameter pemesinan  Karena hal ini berkaitan erat dengan kondisi permukaan benda kerja yang dihasilkan. Kesulitan dalam menentukan kombinasi parameter pemesinan yang sesuai seringkali mengakibatkan kondisi permukaan benda kerja kerja yang tidak sesuai diharapkan atau memiliki kekasaran yang tinggi. Dengan parameter yang tepat, kualitas kekasaran permukaan dapat diprediksi seperti yang direncanakan sebelum proses pemesinan. Parameter pemotongan tersebut adalah kecepatan pemotongan dan kedalaman potong. Pada penelitian ini kecepatan pemotongan yang digunakan bervariasi yaitu 4,68 m/min,7,30 m/min, 11,70 m/min,18,29 m/min dengan kedalaman pemotongan 0,50 mm,1,00 mm dan 1,50 mm, untuk memotong aluminum  6061 dan 7075 dengan menggunakan mata pahat HSS.. Pada langkah awali dilakukan setting mesin perkakas, meletakkan mata pahat pada pemegang mata pahat, meletakkan benda kerja pada ragum, melakukan settingg untuk kecepatan pemotongan, kedalaman pemakanan, dan melakukan pemesinan. Setiap kali selesai pemesinan, dilakukan pengukuran kekasaran permukaan dengan menggunakan alat ukur surface test. Dari hasil penelitian diperoleh bahwa nilai kekasaran permukaan berbanding lurus dengan kedalaman potong. Nilai kekasaran permukaan berbanding terbalik dengan kecepatan potong dan kekerasan material. Penentuan kecepatan potong melalui  persamaan empiris  berdasarkan kekasaran permukaan:  aluminium alloy 6061 adalah:  Ra = 23.366e-0.146Vc(µm) dan aluminium alloy 7075 adalah:  Ra = 13.482e-0.109Vc(µm).


2015 ◽  
Vol 809-810 ◽  
pp. 123-128 ◽  
Author(s):  
Alina Bianca Bonţiu Pop

Starting with the necessity to identify the optimum values of the cutting parameters which are affecting the surface quality, it is appropriate to use the design of experiment techniques to conduct the experiments. Previous researches [1] focused on the investigation of the effects of machining parameters on surface roughness. In this paper, the experiments were conducted based on the established Taguchi’s technique, L8 orthogonal array using Minitab-17 statistical software. Three machining parameters are chosen as process parameters: Cutting Speed, Feed per tooth and Depth of cut. The orthogonal matrix includes these three factors set for analysis, each with 2 levels associated. The level of influence that the process parameters exert on the surface roughness is analyzed by Taguchi method data analysis. In this case the signal to noise ratio was tacked into account. Also, the recommended configuration regarding the optimum values of these parameters was determined as well as the interactions between them, in order to obtain better surface roughness for 7136 aluminum alloy machining. The final results will be used as data for future research.


Author(s):  
Adel Taha Abbas ◽  
Adham Ezzat Ragab ◽  
Ehab Adel El-Danaf ◽  
Essam Ali Al Bahkali

Aluminum has been increasingly used in automotive and aerospace applications due to its beneficial specific strength and chemical properties. Due to its extensive use, machining of aluminum parts has become specifically significant in recent years. One important aspect of machining is the surface quality represented by the surface roughness values. In this article, the effect of equal-channel angular pressing on the surface roughness (Ra, Rq, Rt and Rz) of commercial purity aluminum machined by turning was studied. Five starting material conditions, defined as the annealed and equal-channel angular pressing processed up to four passes, were investigated. The independent variables were the cutting speed, depth of cut and feed rate. The fourth parameter (number of equal-channel angular pressing passes) was considered as categorical factor and, hence, was not included in the mathematical model. A full central composite circumscribed design matrix was built to allow the optimization of surface roughness using response surface methodology. The significance of process parameters and their interactions in estimating surface roughness was investigated using analysis of variance. The two parameters, with significant effect on surface roughness, were found to be the feed rate and number of equal-channel angular pressing passes. Minimum depth of cut (0.15 mm) and minimum feed rate (0.05 mm/rev) are needed to achieve minimum surface roughness parameters: Ra (0.06 µm), Rq (0.057 µm) and Rz (0.71 µm) and Rt (1.2 µm). The cutting speed, for these optimum roughness values, ranged from 207.5 m/min for Ra to 193 m/min for Rz. The optimum roughness values were generally achieved with the higher strength materials. Optimum values for Ra, Rq and Rz happened at the four equal-channel angular pressing passes–processed material, while the optimum value of Rt happened at the three equal-channel angular pressing passes–processed material.


Author(s):  
Brian Boswell ◽  
Mohammad Nazrul Islam ◽  
Ian J Davies ◽  
Alokesh Pramanik

The machining of aerospace materials, such as metal matrix composites, introduces an additional challenge compared with traditional machining operations because of the presence of a reinforcement phase (e.g. ceramic particles or whiskers). This reinforcement phase decreases the thermal conductivity of the workpiece, thus, increasing the tool interface temperature and, consequently, reducing the tool life. Determining the optimum machining parameters is vital to maximising tool life and producing parts with the desired quality. By measuring the surface finish, the authors investigated the influence that the three major cutting parameters (cutting speed (50–150 m/min), feed rate (0.10–0.30 mm/rev) and depth of cut (1.0–2.0 mm)) have on tool life. End milling of a boron carbide particle-reinforced aluminium alloy was conducted under dry cutting conditions. The main result showed that contrary to the expectations for traditional machined alloys, the surface finish of the metal matrix composite examined in this work generally improved with increasing feed rate. The resulting surface roughness (arithmetic average) varied between 1.15 and 5.64 μm, with the minimum surface roughness achieved with the machining conditions of a cutting speed of 100 m/min, feed rate of 0.30 mm/rev and depth of cut of 1.0 mm. Another important result was the presence of surface microcracks in all specimens examined by electron microscopy irrespective of the machining condition or surface roughness.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


2018 ◽  
Vol 12 (2) ◽  
pp. 104-108 ◽  
Author(s):  
Yusuf Fedai ◽  
Hediye Kirli Akin

In this research, the effect of machining parameters on the various surface roughness characteristics (arithmetic average roughness (Ra), root mean square average roughness (Rq) and average maximum height of the profile (Rz)) in the milling of AISI 4140 steel were experimentally investigated. Depth of cut, feed rate, cutting speed and the number of insert were considered as control factors; Ra, Rz and Rq were considered as response factors. Experiments were designed considering Taguchi L9 orthogonal array. Multi signal-to-noise ratio was calculated for the response variables simultaneously. Analysis of variance was conducted to detect the significance of control factors on responses. Moreover, the percent contributions of the control factors on the surface roughness were obtained to be the number of insert (71.89 %), feed (19.74 %), cutting speed (5.08%) and depth of cut (3.29 %). Minimum surface roughness values for Ra, Rz and Rq were obtained at 325 m/min cutting speed, 0.08 mm/rev feed rate, 1 number of insert and 1 mm depth of cut by using multi-objective Taguchi technique.


Sign in / Sign up

Export Citation Format

Share Document