scholarly journals Novel Method for 5G Systems NLOS Channels Parameter Estimation

2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Vladeta Milenkovic ◽  
Stefan Panic ◽  
Dragan Denic ◽  
Dragan Radenkovic

For the development of new 5G systems to operate in mm bands, there is a need for accurate radio propagation modelling at these bands. In this paper novel approach for NLOS channels parameter estimation will be presented. Estimation will be performed based on LCR performance measure, which will enable us to estimate propagation parameters in real time and to avoid weaknesses of ML and moment method estimation approaches.

2020 ◽  
Vol 14 (2) ◽  
Author(s):  
Georg Schiffers ◽  
Julian Arnold ◽  
Alexander Bartella ◽  
Petri Mähönen ◽  
Bernd Lethaus

Abstract Safe lower jaw implantations require precautions to avoid damaging the alveolar nerve. The prevailing methods are preoperative. In this study, we propose a novel approach to measure the distance between a pilot-drill and the alveolar nerve by employing high-frequency impedance measurements. The objective is to provide in vivo real-time information as an early warning of the proximity of the alveolar nerve. The method is examined and tested on animal samples. The impedance measurements were performed using a high-frequency network analyzer. Overall 40 pilot drillings were distributed over five sheep mandibles, with four on each side. Drillings were performed in three steps: inside the cortical layer, inside the spongiosa, and well inside the nerve canal. The inductance measurements were performed with a connected pilot drill, followed by an immediate 3D cone-beam computed tomography (CT) to measure the distance between the tip of the drill and the nerve canal. The measurements show that impedance information is a reliable indicator for proximity of the drill to the nerve. We observe a general trend of decreasing inductance as the drill approaches the nerve and find that at very high frequencies one can detect the closeness to the nerve from characteristic ratios of impedance at nearby frequencies. We report also that using phase information increases the reliability of this method. The findings provide a solid proof of concept for the proposed method. While the results are promising at this stage, the applicability for in vivo conditions requires further studies.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 19-24 ◽  
Author(s):  
Richard Norreys ◽  
Ian Cluckie

Conventional UDS models are mechanistic which though appropriate for design purposes are less well suited to real-time control because they are slow running, difficult to calibrate, difficult to re-calibrate in real time and have trouble handling noisy data. At Salford University a novel hybrid of dynamic and empirical modelling has been developed, to combine the speed of the empirical model with the ability to simulate complex and non-linear systems of the mechanistic/dynamic models. This paper details the ‘knowledge acquisition module’ software and how it has been applied to construct a model of a large urban drainage system. The paper goes on to detail how the model has been linked with real-time radar data inputs from the MARS c-band radar.


Author(s):  
J Ph Guillet ◽  
E Pilon ◽  
Y Shimizu ◽  
M S Zidi

Abstract This article is the first of a series of three presenting an alternative method of computing the one-loop scalar integrals. This novel method enjoys a couple of interesting features as compared with the method closely following ’t Hooft and Veltman adopted previously. It directly proceeds in terms of the quantities driving algebraic reduction methods. It applies to the three-point functions and, in a similar way, to the four-point functions. It also extends to complex masses without much complication. Lastly, it extends to kinematics more general than that of the physical, e.g., collider processes relevant at one loop. This last feature may be useful when considering the application of this method beyond one loop using generalized one-loop integrals as building blocks.


Author(s):  
Brij B. Gupta ◽  
Krishna Yadav ◽  
Imran Razzak ◽  
Konstantinos Psannis ◽  
Arcangelo Castiglione ◽  
...  

Author(s):  
Rakesh Kumar ◽  
Gaurav Dhiman ◽  
Neeraj Kumar ◽  
Rajesh Kumar Chandrawat ◽  
Varun Joshi ◽  
...  

AbstractThis article offers a comparative study of maximizing and modelling production costs by means of composite triangular fuzzy and trapezoidal FLPP. It also outlines five different scenarios of instability and has developed realistic models to minimize production costs. Herein, the first attempt is made to examine the credibility of optimized cost via two different composite FLP models, and the results were compared with its extension, i.e., the trapezoidal FLP model. To validate the models with real-time phenomena, the Production cost data of Rail Coach Factory (RCF) Kapurthala has been taken. The lower, static, and upper bounds have been computed for each situation, and then systems of optimized FLP are constructed. The credibility of each model of composite-triangular and trapezoidal FLP concerning all situations has been obtained, and using this membership grade, the minimum and the greatest minimum costs have been illustrated. The performance of each composite-triangular FLP model was compared to trapezoidal FLP models, and the intense effects of trapezoidal on composite fuzzy LPP models are investigated.


Author(s):  
Negin Yousefpour ◽  
Steve Downie ◽  
Steve Walker ◽  
Nathan Perkins ◽  
Hristo Dikanski

Bridge scour is a challenge throughout the U.S.A. and other countries. Despite the scale of the issue, there is still a substantial lack of robust methods for scour prediction to support reliable, risk-based management and decision making. Throughout the past decade, the use of real-time scour monitoring systems has gained increasing interest among state departments of transportation across the U.S.A. This paper introduces three distinct methodologies for scour prediction using advanced artificial intelligence (AI)/machine learning (ML) techniques based on real-time scour monitoring data. Scour monitoring data included the riverbed and river stage elevation time series at bridge piers gathered from various sources. Deep learning algorithms showed promising in prediction of bed elevation and water level variations as early as a week in advance. Ensemble neural networks proved successful in the predicting the maximum upcoming scour depth, using the observed sensor data at the onset of a scour episode, and based on bridge pier, flow and riverbed characteristics. In addition, two of the common empirical scour models were calibrated based on the observed sensor data using the Bayesian inference method, showing significant improvement in prediction accuracy. Overall, this paper introduces a novel approach for scour risk management by integrating emerging AI/ML algorithms with real-time monitoring systems for early scour forecast.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2534
Author(s):  
Oualid Doukhi ◽  
Deok-Jin Lee

Autonomous navigation and collision avoidance missions represent a significant challenge for robotics systems as they generally operate in dynamic environments that require a high level of autonomy and flexible decision-making capabilities. This challenge becomes more applicable in micro aerial vehicles (MAVs) due to their limited size and computational power. This paper presents a novel approach for enabling a micro aerial vehicle system equipped with a laser range finder to autonomously navigate among obstacles and achieve a user-specified goal location in a GPS-denied environment, without the need for mapping or path planning. The proposed system uses an actor–critic-based reinforcement learning technique to train the aerial robot in a Gazebo simulator to perform a point-goal navigation task by directly mapping the noisy MAV’s state and laser scan measurements to continuous motion control. The obtained policy can perform collision-free flight in the real world while being trained entirely on a 3D simulator. Intensive simulations and real-time experiments were conducted and compared with a nonlinear model predictive control technique to show the generalization capabilities to new unseen environments, and robustness against localization noise. The obtained results demonstrate our system’s effectiveness in flying safely and reaching the desired points by planning smooth forward linear velocity and heading rates.


Author(s):  
B. Shameedha Begum ◽  
N. Ramasubramanian

Embedded systems are designed for a variety of applications ranging from Hard Real Time applications to mobile computing, which demands various types of cache designs for better performance. Since real-time applications place stringent requirements on performance, the role of the cache subsystem assumes significance. Reconfigurable caches meet performance requirements under this context. Existing reconfigurable caches tend to use associativity and size for maximizing cache performance. This article proposes a novel approach of a reconfigurable and intelligent data cache (L1) based on replacement algorithms. An intelligent embedded data cache and a dynamic reconfigurable intelligent embedded data cache have been implemented using Verilog 2001 and tested for cache performance. Data collected by enabling the cache with two different replacement strategies have shown that the hit rate improves by 40% when compared to LRU and 21% when compared to MRU for sequential applications which will significantly improve performance of embedded real time application.


Sign in / Sign up

Export Citation Format

Share Document