scholarly journals Systematic Identification and Molecular Characteristics of Long Noncoding RNAs in Pig Tissues

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yalan Yang ◽  
Rong Zhou ◽  
Shiyun Zhu ◽  
Xunbi Li ◽  
Hua Li ◽  
...  

Long noncoding RNAs (lncRNAs) are non-protein-coding RNAs that are involved in a variety of biological processes. The pig is an important farm animal and an ideal biomedical model. In this study, we performed a genome-wide scan for lncRNAs in multiple tissue types from pigs. A total of 118 million paired-end 90 nt clean reads were obtained via strand-specific RNA sequencing, 80.4% of which were aligned to the pig reference genome. We developed a stringent bioinformatics pipeline to identify 2,139 high-quality multiexonic lncRNAs. The characteristic analysis revealed that the novel lncRNAs showed relatively shorter transcript length, fewer exons, and lower expression levels in comparison with protein-coding genes (PCGs). The guanine-cytosine (GC) content of the protein-coding exons and introns was significantly higher than that of the lncRNAs. Moreover, the single nucleotide polymorphism (SNP) density of lncRNAs was significantly higher than that of PCGs. Conservation analysis revealed that most lncRNAs were evolutionarily conserved among pigs, humans, and mice, such as CUFF.253988.1, which shares homology with human long noncoding RNA MALAT1. The findings of our study significantly increase the number of known lncRNAs in pigs.

2018 ◽  
Author(s):  
Azali Azlan ◽  
Sattam M. Obeidat ◽  
Muhammad Amir Yunus ◽  
Ghows Azzam

Long noncoding RNAs (lncRNAs) play diverse roles in biological process including developmental regulation and host-pathogen interactions. Aedes aegypti (Ae. aegypti), a blood-sucking mosquito, is the principal vector responsible for replication and transmission of arboviruses including dengue, zika, and chikungunya virus. Systematic identification and developmental characterisation of Ae. aegypti lncRNAs are still limited. We performed genome-wide identification of lncRNAs followed by developmental profiling of lncRNA expression in Ae. aegypti. We identified a total of 4,689 novel lncRNA transcripts, of which 2,064, 2,076, and 549 were intergenic, intronic, and antisense respectively. Ae. aegypti lncRNAs shared many of the characteristics with other species including low expression, low GC content, short in length, low conservation, and their expression tended to be correlated with neighbouring and antisense protein-coding genes. Subsets of lncRNAs showed evidence that they were maternally inherited, suggesting potential roles in early-stage embryos. Additionally, lncRNAs showed higher tendency to be expressed in developmental and temporal specific manner. Upon infection of Ae. aegypti cells with dengue virus serotype 1, we identified 2,335 differentially expressed transcripts, 957 of which were lncRNA transcripts. The systematic annotation, developmental profiling, and transcriptional response upon virus infection provide foundation for future investigation on the function of Ae. aegypti lncRNAs.


2018 ◽  
Author(s):  
Iuliia K. Karnaukhova ◽  
Dmitrii E. Polev ◽  
Larisa L. Krukovskaya ◽  
Alexey E. Masharsky ◽  
Olga V. Nazarenko ◽  
...  

AbstractOrthopedia homeobox (OTP) gene encodes a homeodomain-containing transcription factor involved in brain development. OTP is mapped to human chromosome 5q14.1. Earlier we described transcription in the second intron of this gene in wide variety of tumors, but among normal tissues only in testis. In GeneBank these transcripts are presented by several 300-400 nucleotides long AI267901-like ESTs.We assumed that AI267901-like ESTs belong to longer transcript(s). We used the Rapid Amplification of cDNA Ends (RACE) approach and other methods to find the full-length transcript. The found transcript was 2436 nucleotides long polyadenylated sequence in antisense to OTP gene. The corresponding gene consisted of two exons separated by an intron of 2961 bp long. The first exon was found to be 91 bp long and located in the third exon of OTP gene. The second exon was 2345bp long and located in the second intron of OTP gene.The search of possible open reading frames (ORFs) showed the lack of significant ORFs. We have shown the expression of new gene in many human tumors and only in one sampled normal testis. The data suggest that we discovered a new antisense cancer-testis sequence OTP-AS1 (OTP- antisense RNA 1), which belongs to long noncoding RNAs (lncRNAs). According to our findings we assume that OTP-AS1 and OTP genes may be the CT-coding gene/CT-ncRNA pair involved in regulatory interactions.Author summaryPreviously, long non-coding RNAs (lncRNAs) were considered as genetic “noise”. However, it was later shown that only 2% of genomic transcripts have a protein-coding ability. Non-coding RNA is divided into short non-coding RNAs (20-200 nucleotides) and long noncoding RNAs (200-100,000 nucleotides). Genes encoding lncRNA often overlap or are adjacent to protein-coding genes, and localization of this kind is beneficial in order to regulate the transcription of neighboring genes. Studies have shown that of lncRNAs play many roles in the regulation of gene expression. New evidence indicates that dysfunctions of lncRNAs are associated with human diseases and cancer.In our study we found a new cancer-testis long noncoding RNA (OTP-AS1), which is an antisense of protein-coding cancer-testis gene (OTP). Thus, OTP-AS1 and OTP genes may be the CT-coding gene/CT-ncRNA pair involved in regulatory interactions. This is supported by the similar profile of their expression. OTP-AS1 may be of interest as a potential diagnostic marker of cancer or a potential target for cancer therapy.Part of OTP-AS1 gene (5’-end of the second exon) is evolutionary younger than the rest of gene sequence and is less conservative. This links OTP-AS1 gene with so-called TSEEN (tumor-specifically expressed, evolutionary novel) genes described by the authors in previous papers.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Teresa Colombo ◽  
Lorenzo Farina ◽  
Giuseppe Macino ◽  
Paola Paci

It is becoming increasingly clear that short and long noncoding RNAs critically participate in the regulation of cell growth, differentiation, and (mis)function. However, while the functional characterization of short non-coding RNAs has been reaching maturity, there is still a paucity of well characterized long noncoding RNAs, even though large studies in recent years are rapidly increasing the number of annotated ones. The long noncoding RNA PVT1 is encoded by a gene that has been long known since it resides in the well-known cancer risk region 8q24. However, a couple of accidental concurrent conditions have slowed down the study of this gene, that is, a preconception on the primacy of the protein-coding over noncoding RNAs and the prevalent interest in its neighbor MYC oncogene. Recent studies have brought PVT1 under the spotlight suggesting interesting models of functioning, such as competing endogenous RNA activity and regulation of protein stability of important oncogenes, primarily of the MYC oncogene. Despite some advancements in modelling the PVT1 role in cancer, there are many questions that remain unanswered concerning the precise molecular mechanisms underlying its functioning.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1489-D1495 ◽  
Author(s):  
Jingjing Jin ◽  
Peng Lu ◽  
Yalong Xu ◽  
Zefeng Li ◽  
Shizhou Yu ◽  
...  

Abstract Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with little or no protein coding potential. The expanding list of lncRNAs and accumulating evidence of their functions in plants have necessitated the creation of a comprehensive database for lncRNA research. However, currently available plant lncRNA databases have some deficiencies, including the lack of lncRNA data from some model plants, uneven annotation standards, a lack of visualization for expression patterns, and the absence of epigenetic information. To overcome these problems, we upgraded our Plant Long noncoding RNA Database (PLncDB, http://plncdb.tobaccodb.org/), which was based on a uniform annotation pipeline. PLncDB V2.0 currently contains 1 246 372 lncRNAs for 80 plant species based on 13 834 RNA-Seq datasets, integrating lncRNA information from four other resources including EVLncRNAs, RNAcentral and etc. Expression patterns and epigenetic signals can be visualized using multiple tools (JBrowse, eFP Browser and EPexplorer). Targets and regulatory networks for lncRNAs are also provided for function exploration. In addition, PLncDB V2.0 is hierarchical and user-friendly and has five built-in search engines. We believe PLncDB V2.0 is useful for the plant lncRNA community and data mining studies and provides a comprehensive resource for data-driven lncRNA research in plants.


2020 ◽  
Author(s):  
Azali Azlan ◽  
Sattam M. Obeidat ◽  
Kumitaa Theva Das ◽  
Muhammad Amir Yunus ◽  
Ghows Azzam

AbstractThe Asian tiger mosquito, Aedes albopictus (Ae. albopictus), is an important vector that transmits arboviruses such as dengue (DENV), Zika (ZIKV) and Chikungunya virus (CHIKV). On the other hand, long noncoding RNAs (lncRNAs) are known to regulate various biological processes. Knowledge on Ae. albopictus lncRNAs and their functional role in virus-host interactions are still limited. Here, we identified and characterized the lncRNAs in the genome of an arbovirus vector, Ae. albopictus, and evaluated their potential involvement in DENV and ZIKV infection. We used 148 public datasets, and identified a total of 10, 867 novel lncRNA transcripts, of which 5,809, 4,139, and 919 were intergenic, intronic and antisense respectively. The Ae. albopictus lncRNAs shared many characteristics with other species such as short length, low GC content, and low sequence conservation. RNA-sequencing of Ae. albopictus cells infected with DENV and ZIKV showed that the expression of lncRNAs was altered upon virus infection. Target prediction analysis revealed that Ae. albopictus lncRNAs may regulate the expression of genes involved in immunity and other metabolic and cellular processes. To verify the role of lncRNAs in virus infection, we generated mutation in lncRNA loci using CRISPR-Cas9, and discovered that two lncRNA loci mutations, namely XLOC_029733 (novel lncRNA transcript id: lncRNA_27639.2) and LOC115270134 (known lncRNA transcript id: XR_003899061.1) resulted in enhancement of DENV and ZIKV replication. The results presented here provide an important foundation for future studies of lncRNAs and their relationship with virus infection in Ae. albopictus.Author summaryAe. albopictus is an important vector of arboviruses such as dengue and Zika. Studies on virus-host interaction at gene expression and molecular level are crucial especially in devising methods to inhibit virus replication in Aedes mosquito. Previous reports showed that, besides protein-coding genes, noncoding RNAs such as lncRNAs are also involved in virus-host interaction. In this study, we report a comprehensive catalog of novel lncRNA transcripts in the genome of Ae. albopictus. We also show that the expression of lncRNAs was altered upon infection with dengue and Zika. Additionally, depletion of certain lncRNAs resulted in increased replication of dengue and Zika; hence, suggesting potential association of lncRNAs in virus infection. Results of this study provide a new avenue to the investigation of mosquito-virus interactions that may potentially pave way to the development of novel methods in vector control.


2018 ◽  
Author(s):  
Azali Azlan ◽  
Muhammad Amir Yunus ◽  
Ghows Azzam

AbstractAedes albopictus (Ae. albopictus) is an important vector of arboviruses such as Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Long noncoding RNA (lncRNAs) have been identified in other vectors including Aedes aegypti and Anopheles mosquitoes, few of which have been implicated in immunity and viral replication. To identify lncRNAs with potential biological functions in Ae. albopictus, we performed RNA-seq on Ae. albopictus cells infected with DENV and ZIKV, and analyzed them together with public datasets. We identified a total of 23,899 transcripts, 16,089 were intergenic while 3,126 and 4,183 of them were antisense and intronic to annotated genes respectively. Ae. albopictus lncRNAs shared many of the characteristics with their invertebrate and vertebrate counterparts, such as low expression, low GC content, short in length, and low conservation even among closely related species. Compared to protein-coding genes, lncRNAs exhibited higher tendency to be expressed in a stage-specific manner. Besides, expression of lncRNAs and nearest protein-coding genes tended to be correlated, especially for the gene pairs within 1kb from each other. We also discovered that Ae. albopictus lncRNAs have the potential to act as precursors for miRNA and piRNAs, both of which have been implicated in antiviral defense in Aedes mosquito. Upon flavivirus infection, lncRNAs were observed to be differentially expressed, which possibly indicates the involvement of lncRNAs in the host-antiviral defense. Our study provides the first systematic identification of lncRNAs in Ae. albopictus, hence, offering a foundation for future studies of lncRNA functions.


2020 ◽  
Author(s):  
Azali Azlan ◽  
Mardani Abdul Halim ◽  
Faisal Mohamad ◽  
Ghows Azzam

AbstractThe Southern house mosquito, Culex quinquefasciatus (Cx. quinquefasciatus) is an important vector that transmit multiple diseases including West Nile encephalitis, Japanese encephalitis, St. Louis encephalitis and lymphatic filariasis. Long noncoding RNAs (lncRNAs) involve in many biological processes such development, infection, and virus-host interaction. However, there is no systematic identification and characterization of lncRNAs in Cx. quinquefasciatus. Here, we report the first ever lncRNA identification in Cx. quinquefasciatus. By using 31 public RNA-seq datasets, a total of 4,763 novel lncRNA transcripts were identified, of which 3,591, 569, and 603 were intergenic, intronic, and antisense respectively. Examination of genomic features revealed that Cx. quinquefasciatus shared similar characteristics with other species such as short in length, low GC content, low sequence conservation, and low coding potential. Furthermore, compared to protein-coding genes, Cx. quinquefasciatus lncRNAs had lower expression values, and tended to be expressed in temporally-specific fashion. In addition, weighted correlation network and functional annotation analyses showed that lncRNAs may have roles in blood meal acquisition of adult female Cx. quinquefasciatus mosquitoes. This study presents the first systematic identification and analysis of Cx. quinquefasciatus lncRNAs and their association with blood feeding. Results generated from this study will facilitate future investigation on the function of Cx. quinquefasciatus lncRNAs.


2016 ◽  
Vol 94 (4) ◽  
Author(s):  
Maoliang Ran ◽  
Bin Chen ◽  
Zhi Li ◽  
Maisheng Wu ◽  
Xiaochun Liu ◽  
...  

2021 ◽  
Vol 72 (1) ◽  
Author(s):  
Andrzej T. Wierzbicki ◽  
Todd Blevins ◽  
Szymon Swiezewski

Plants have an extraordinary diversity of transcription machineries, including five nuclear DNA-dependent RNA polymerases. Four of these enzymes are dedicated to the production of long noncoding RNAs (lncRNAs), which are ribonucleic acids with functions independent of their protein-coding potential. lncRNAs display a broad range of lengths and structures, but they are distinct from the small RNA guides of RNA interference (RNAi) pathways. lncRNAs frequently serve as structural, catalytic, or regulatory molecules for gene expression. They can affect all elements of genes, including promoters, untranslated regions, exons, introns, and terminators, controlling gene expression at various levels, including modifying chromatin accessibility, transcription, splicing, and translation. Certain lncRNAs protect genome integrity, while others respond to environmental cues like temperature, drought, nutrients, and pathogens. In this review, we explain the challenge of defining lncRNAs, introduce the machineries responsible for their production, and organize this knowledge by viewing the functions of lncRNAs throughout the structure of a typical plant gene. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document