scholarly journals Anti-Skin Cancer Activities of Apostichopus japonicus Extracts from Low-Temperature Ultrasonification Process

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Nam Young Kim ◽  
Woon Yong Choi ◽  
Soo Jin Heo ◽  
Do Hyung Kang ◽  
Hyeon Yong Lee

Objectives. This work aimed to enhance anti-skin cancer activities of Apostichopus japonicus, spiky sea cucumber, through ultrasonification extraction process at low temperature. Methods. Dried Apostichopus japonicus was extracted with an ultrasonification process at 50°C and 95 kHz for two hours (UE), and anti-skin cancer activities of the extract from the UE were also compared with those from conventional extraction processes using hot water (WE) or 70% ethanol at 80°C (EE) for 12 hours. Results. The amount of canthaxanthin in the UE was higher than that in the WE or EE, and its cytotoxicity against human keratinocytes was less than the others. The extract from the UE showed 93.5% inhibition against human malignant cell growth, which was also higher than those from both WE and EE. The extract from the UE demonstrated the ability of inhibiting both cancer cell proliferation and metastasis by downregulating the skin tumor-promoting genes such as Bcl-2, STAT3, and MMP-9. Conclusions. The ultrasonification process was proved to be effective especially in extracting heat-sensitive marine biomass, A. japonicus having higher amounts of canthaxanthin and better anti-skin cancer activities, possibly due to less destruction and high elution of bioactive substances under low temperature extraction condition.

2018 ◽  
Vol 69 (5) ◽  
pp. 1089-1098
Author(s):  
Elena Suzana Biris Dorhoi ◽  
Maria Tofana ◽  
Simona Maria Chis ◽  
Carmen Elena Lupu ◽  
Ticuta Negreanu Pirjol

The valorification of the marine biomass is an important resource for many industries like pharmaceutical, supplying raw material for the extraction of bioactive substances (vitamins, sterols and collagen), cosmetics, biofertilizers and wastewater treatment. In the last years a special attention has been given to the use of macroalgae. The aim of this study was to emphasize the capacity of two representative green algae species frequent presents on the Romanian shore, Ulva lactuca (L.) and Cladophora vagabunda (L.) Hoek, to remove two usual detergents from wastewater. The green algae washed, dried at room temperature, macerated to powder were introduced into different filter paper for comparison, then immersed in waste water treated with different concentrations of detergents. Tap water was used for the experiment. The results show that Ulva lactuca (L.) species is suitable than Cladophora vagabunda (L.) Hoek species, for wastewater treatment.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 954 ◽  
Author(s):  
Hanne Kauko ◽  
Daniel Rohde ◽  
Armin Hafner

District heating enables an economical use of energy sources that would otherwise be wasted to cover the heating demands of buildings in urban areas. For efficient utilization of local waste heat and renewable heat sources, low distribution temperatures are of crucial importance. This study evaluates a local heating network being planned for a new building area in Trondheim, Norway, with waste heat available from a nearby ice skating rink. Two alternative supply temperature levels have been evaluated with dynamic simulations: low temperature (40 °C), with direct utilization of waste heat and decentralized domestic hot water (DHW) production using heat pumps; and medium temperature (70 °C), applying a centralized heat pump to lift the temperature of the waste heat. The local network will be connected to the primary district heating network to cover the remaining heat demand. The simulation results show that with a medium temperature supply, the peak power demand is up to three times higher than with a low temperature supply. This results from the fact that the centralized heat pump lifts the temperature for the entire network, including space and DHW heating demands. With a low temperature supply, heat pumps are applied only for DHW production, which enables a low and even electricity demand. On the other hand, with a low temperature supply, the district heating demand is high in the wintertime, in particular if the waste heat temperature is low. The choice of a suitable supply temperature level for a local heating network is hence strongly dependent on the temperature of the available waste heat, but also on the costs and emissions related to the production of district heating and electricity in the different seasons.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 25
Author(s):  
Antonio Garrido Marijuan ◽  
Roberto Garay ◽  
Mikel Lumbreras ◽  
Víctor Sánchez ◽  
Olga Macias ◽  
...  

District heating networks deliver around 13% of the heating energy in the EU, being considered as a key element of the progressive decarbonization of Europe. The H2020 REnewable Low TEmperature District project (RELaTED) seeks to contribute to the energy decarbonization of these infrastructures through the development and demonstration of the following concepts: reduction in network temperature down to 50 °C, integration of renewable energies and waste heat sources with a novel substation concept, and improvement on building-integrated solar thermal systems. The coupling of renewable thermal sources with ultra-low temperature district heating (DH) allows for a bidirectional energy flow, using the DH as both thermal storage in periods of production surplus and a back-up heating source during consumption peaks. The ultra-low temperature enables the integration of a wide range of energy sources such as waste heat from industry. Furthermore, RELaTED also develops concepts concerning district heating-connected reversible heat pump systems that allow to reach adequate thermal levels for domestic hot water as well as the use of the network for district cooling with high performance. These developments will be demonstrated in four locations: Estonia, Serbia, Denmark, and Spain.


Author(s):  
Wei Li ◽  
Cheng Zheng ◽  
Jian Zhao ◽  
Zhengxiang Ning

A novel microwave assisted multi-stage countercurrent extraction (MAMCE) technique was developed for the extraction of dihydromyricetin from Chinese rattan tea, Ampelopsis grossedentata. The technique combined the advantages of microwave heating and dynamic multi-stage countercurrent extraction and achieved marked improvement in extraction efficiency over microwave assisted batch extraction. Analysis of dihydromyricetin concentrations in the solvent and matrix throughout the extraction process showed that by dividing the extraction into multiple stages and exchanging of solvents between stages, steady and substantial concentration gradients were established between the matrix and solvent, thus enabling the achievement of high extraction efficiency. The yield of dihydromyricetin was significantly affected by temperature, pH, solvent/material ratio and extraction time, and optimal extraction conditions were found to be 80-100°C, at acidic pH with a solvent/material ratio of 25-30 to 1 and extraction time of 5-10 min. With the high extraction efficiency and low usage of extraction solvent, MAMCE could prove to be a promising extraction technique which can be applied to the extraction of dihydromyricentin and other bioactive substances from natural materials.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3350
Author(s):  
Theofanis Benakopoulos ◽  
William Vergo ◽  
Michele Tunzi ◽  
Robbe Salenbien ◽  
Svend Svendsen

The operation of typical domestic hot water (DHW) systems with a storage tank and circulation loop, according to the regulations for hygiene and comfort, results in a significant heat demand at high operating temperatures that leads to high return temperatures to the district heating system. This article presents the potential for the low-temperature operation of new DHW solutions based on energy balance calculations and some tests in real buildings. The main results are three recommended solutions depending on combinations of the following three criteria: district heating supply temperature, relative circulation heat loss due to the use of hot water, and the existence of a low-temperature space heating system. The first solution, based on a heating power limitation in DHW tanks, with a safety functionality, may secure the required DHW temperature at all times, resulting in the limited heating power of the tank, extended reheating periods, and a DH return temperature of below 30 °C. The second solution, based on the redirection of the return flow from the DHW system to the low-temperature space heating system, can cool the return temperature to the level of the space heating system return temperature below 35 °C. The third solution, based on the use of a micro-booster heat pump system, can deliver circulation heat loss and result in a low return temperature below 35 °C. These solutions can help in the transition to low-temperature district heating.


2011 ◽  
Vol 32 (3) ◽  
pp. 57-70 ◽  
Author(s):  
Dariusz Mikielewicz ◽  
Jarosław Mikielewicz

Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC In the paper presented is a novel concept to utilize the heat from the turbine bleed to improve the quality of working fluid vapour in the bottoming organic Rankine cycle (ORC). That is a completely novel solution in the literature, which contributes to the increase of ORC efficiency and the overall efficiency of the combined system of the power plant and ORC plant. Calculations have been accomplished for the case when available is a flow rate of low enthalpy hot water at a temperature of 90 °C, which is used for preliminary heating of the working fluid. That hot water is obtained as a result of conversion of exhaust gases in the power plant to the energy of hot water. Then the working fluid is further heated by the bleed steam to reach 120 °C. Such vapour is subsequently directed to the turbine. In the paper 5 possible working fluids were examined, namely R134a, MM, MDM, toluene and ethanol. Only under conditions of 120 °C/40 °C the silicone oil MM showed the best performance, in all other cases the ethanol proved to be best performing fluid of all. Results are compared with the "stand alone" ORC module showing its superiority.


Sign in / Sign up

Export Citation Format

Share Document