scholarly journals Numerical Simulation Study on Fracture Parameter Optimization in Developing Low-Permeability Anisotropic Reservoirs

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Jie Liu ◽  
Zhenhua Xu ◽  
Zhe Yuan ◽  
Hanyu Bie ◽  
Pengcheng Liu

The diamond-shape inverted nine-spot well pattern is widely used in developing low-permeability reservoirs with fractures. However, production wells with equal fracture lengths will lead to nonuniform displacement, especially in anisotropic reservoir. Previous researches mainly focused on equal-length fractures, while studies on the unequal-length fractures which can dramatically improve the development efficiency were little. In this paper, a corresponding numerical model with unequal length of fracture designed in the edge and the corner wells was built in a low-permeability anisotropic reservoir. The main objective was to examine and evaluate the effects of anisotropic permeability and fracture parameter on the waterflooding in the diamond-shape inverted nine-spot well pattern. The results indicate that different fractures penetration ratio and anisotropic permeability both result in different development efficiency. Fracture of the edge well are more easily to be water breakthrough, while the increase of penetration ratio of injection well effectively enhance oil recovery. Moreover, the most optimal penetration ratios of production well fractures under different kx : ky are determined. With the increase of kx : ky, the optimized penetration ratio of corner wells fracture decrease, while that of the edge wells increase. Setting unequal length fractures in low-permeability anisotropic reservoirs can effectively improve the oil displacement efficiency in the waterflooding process.

2020 ◽  
Vol 17 (5) ◽  
pp. 1329-1344
Author(s):  
Alolika Das ◽  
Nhut Nguyen ◽  
Quoc P. Nguyen

Abstract Polymer-based EOR methods in low-permeability reservoirs face injectivity issues and increased fracturing due to near wellbore plugging, as well as high-pressure gradients in these reservoirs. Polymer may cause pore blockage and undergo shear degradation and even oxidative degradation at high temperatures in the presence of very hard brine. Low-tension gas (LTG) flooding has the potential to be applied successfully for low-permeability carbonate reservoirs even in the presence of high formation brine salinity. In LTG flooding, the interfacial tension between oil and water is reduced to ultra-low values (10−3 dyne/cm) by injecting an optimized surfactant formulation to maximize mobilization of residual oil post-waterflood. Gas (nitrogen, hydrocarbon gases or CO2) is co-injected along with the surfactant slug to generate in situ foam which reduces the mobility ratio between the displaced (oil) and displacing phases, thus improving the displacement efficiency of the oil. In this work, the mechanism governing LTG flooding in low-permeability, high-salinity reservoirs was studied at a microscopic level using microemulsion properties and on a macroscopic scale by laboratory-scale coreflooding experiments. The main injection parameters studied were injected slug salinity and the interrelation between surfactant concentration and injected foam quality, and how they influence oil mobilization and displacement efficiency. Qualitative assessment of the results was performed by studying oil recovery, oil fractional flow, oil bank breakthrough and effluent salinity and pressure drop characteristics.


2017 ◽  
Vol 15 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Jiazheng Qin ◽  
Yuetian Liu ◽  
Yueli Feng ◽  
Yao Ding ◽  
Liu Liu ◽  
...  

2011 ◽  
Vol 383-390 ◽  
pp. 3809-3813
Author(s):  
Yong Li Wang ◽  
Tao Li ◽  
Zhi Guo Fu ◽  
Shu Xia Liu ◽  
Bai Lin Yu ◽  
...  

The pilot block is a heterogeneous reservoir with low permeability which is only 100-200(mD). Polymer flooding will be used to enhance oil recovery (EOR). Therefore, some experiment will be carried out in this pilot block .According to the simulation results, we can infer the effect factors of the polymer flooding such as concentration, injection rate, slug amounts, and well pattern. It gives us effective information for the field development plan.


Author(s):  
Ming Zhou ◽  
Juncheng Bu ◽  
Jie Wang ◽  
Xiao Guo ◽  
Jie Huang ◽  
...  

Poly (MSt-MMA) nanosphere as foam stabilizing agent was synthesized by emulsion polymerization. The three phase foam was prepared with Disodium 4-Dodecyl-2,4′-Oxydiben Zenesulfonate (DOZS) as foaming agent, Hydrolyzed Polyacrylamide (HPAM) and synthesized poly (MSt-MMA) nanospheres as the mixed foam stabilizing agents. It had outstanding foaming performance and foam stability. The optimal three phase foam system consisting of 0.12 wt% HPAM, 0.04 wt% poly (MSt-MMA) nanospheres and 0.12 wt% DOZS by orthogonal experiment, had high apparent viscosity, which showed that three components had a very good synergistic effect. The three phase foam’s temperature tolerance and salt tolerance were researched in laboratory tests. Flooding oil experiment showed that the average displacement efficiency of three phase foam system was 16.1 wt% in single core experiments and 21.7 wt% in double core experiments. Resistance coefficient of low permeability core was more than those of high permeability core, but their residual resistance coefficients were small. The results of core experiment and pilot test indicated that the three phase foam had good profile control ability and generated low damage to the low permeability layer for extra-low permeability reservoirs. Three phase foam flooding has great prospects for Enhanced Oil Recovery (EOR) in extra-low permeability reservoirs.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Le Jiang ◽  
Peng Gao ◽  
Jie Liu ◽  
Yunbin Xiong ◽  
Jing Jiang ◽  
...  

Dynamic fractures are a geological attribute of water flooding development in tight fractured oil reservoirs. However, previous studies have mainly focused on the opening mechanism of dynamic fractures and the influence of dynamic fractures on development. Few attempts have been made to investigate the optimization of the dynamic fracture parameter. In this study, the inverted square nine-spot well pattern model is established by taking fractured reservoir’s heterogeneity and its threshold pressure gradients into account. This simulation model optimizes the various parameters in a tight fractured oil reservoir with dynamic fractures, that is, the intersection angle between the dynamic fractures and the well array, the number of dynamic fractures, the penetration ratio, and the conductivity of the oil well’s hydraulic fractures. The results of this optimization are used to investigate the oil displacement mechanism of dynamic fractures and to discuss a mechanism to enhance oil recovery using an inverted square nine-spot well pattern. The simulation results indicate that a 45° intersection angle can effectively restrain the increase in the water cut. A single dynamic fracture can effectively control the displacement direction of the injected water and improve the oil displacement efficiency. Moreover, the optimal penetration ratio and the conductivity of the hydraulic fracture are 0.6 and 40 D-cm, respectively.


2020 ◽  
Vol 206 ◽  
pp. 02017
Author(s):  
Taoping Chen ◽  
Wen Sun ◽  
Guofang Zhang ◽  
Fuping Wang

In order to enhance oil recovery in low and ultra-low permeability layer, both of the numerical simulation and physical model experiment have been researched. First, the dynamic distribution of CO1 and N1 in the oil and gas phase in the CO2-N2 compound flooding process was numerically simulated by using the long slim-tube model. The results show that the CO2 slug should have at least 0.3 PV to prevent the impact of N2 channeling effectively. Second, under the experimental conditions of complete miscibility of CO2-crude oil, the two types of natural cores including low and ultra-low permeability, respectively, are used for experimental study on oil displacement. The results confirm that CO2-N2 compound flooding with 0.3 PV CO2 pre-slug can achieve a good result. Finally, a five-point well pattern element model is established by CMG. The recovery and the gas cost of per ton of oil are calculated respectively for CO2-N2 compound flooding and full CO2 flooding at 300 m well spacing of low and ultra-low permeability layer. According to the simulation results, the optimal CO2 pre-slug size in CO2-N2 compound flooding under the condition of low and ultra-low permeability layer five-point well pattern is 0.4 PV.


2013 ◽  
Vol 318 ◽  
pp. 501-506
Author(s):  
Zhang Zhang ◽  
Shun Li He ◽  
Hai Yong Zhang

Because the development of ultra-low permeability reservoir is relative to fracture system, suitable well pattern arrangement is very significant for effective flooding management. There were three kinds of well pattern used to waterflood in Changqing oilfield: square inverted nine-spot, rhombus inverted nine-spot and rectangular five-spot pattern, according to the degree of fracture growth. In view of the defects of these well patterns in the development of ultra-low permeability reservoirs, a new well spacing concept is developed. Numerical simulations are carried out to illustrate the adaptability and strong points of this new well pattern. For this well pattern, on the one hand, the distance between producers and injectors along the fracture direction is widened and thus massive fracturing can be conducted to enhance oil productivity and water injection, and on the other hand, a high producer/injector ratio ensures high oil recovery rate in early stage. Besides, this new well pattern has a great ability of adjustment. Field application showed a remarkably well producing performance.


2017 ◽  
pp. 30-36
Author(s):  
R. V. Urvantsev ◽  
S. E. Cheban

The 21st century witnessed the development of the oil extraction industry in Russia due to the intensifica- tion of its production at the existing traditional fields of Western Siberia, the Volga region and other oil-extracting regions, and due discovering new oil and gas provinces. At that time the path to the development of fields in Eastern Siberia was already paved. The large-scale discoveries of a number of fields made here in the 70s-80s of the 20th century are only being developed now. The process of development itself is rather slow in view of a number of reasons. Create a problem of high cost value of oil extraction in the region. One of the major tasks is obtaining the maximum oil recovery factor while reducing the development costs. The carbonate layer lying within the Katangsky suite is low-permeability, and its inventories are categorised as hard to recover. Now, the object is at a stage of trial development,which foregrounds researches on selecting the effective methods of oil extraction.


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


1982 ◽  
Vol 22 (05) ◽  
pp. 647-657 ◽  
Author(s):  
J.P. Batycky ◽  
B.B. Maini ◽  
D.B. Fisher

Abstract Miscible gas displacement data obtained from full-diameter carbonate reservoir cores have been fitted to a modified miscible flow dispersion-capacitance model. Starting with earlier approaches, we have synthesized an algorithm that provides rapid and accurate determination of the three parameters included in the model: the dispersion coefficient, the flowing fraction of displaceable volume, and the rate constant for mass transfer between flowing and stagnant volumes. Quality of fit is verified with a finite-difference simulation. The dependencies of the three parameters have been evaluated as functions of the displacement velocity and of the water saturation within four carbonate cores composed of various amounts of matrix, vug, and fracture porosity. Numerical simulation of a composite core made by stacking three of the individual cores has been compared with the experimental data. For comparison, an analysis of Berea sandstone gas displacement also has been provided. Although the sandstone displays a minor dependence of gas recovery on water saturation, we found that the carbonate cores are strongly affected by water content. Such behavior would not be measurable if small carbonate samples that can reflect only matrix properties were used. This study therefore represents a significant assessment of the dispersion-capacitance model for carbonate cores and its ability to reflect changes in pore interconnectivity that accompany water saturation alteration. Introduction Miscible displacement processes are used widely in various aspects of oil recovery. A solvent slug injected into a reservoir can be used to displace miscibly either oil or gas. The necessary slug size is determined by the rate at which deterioration can occur as the slug is Another commonly used miscible process involves addition of a small slug within the injected fluids or gases to determine the nature and extent of inter well communication. The quantity of tracer material used is dictated by analytical detection capabilities and by an understanding of the miscible displacement properties of the reservoir. We can develop such understanding by performing one-dimensional (1D) step-change miscible displacement experiments within the laboratory with selected reservoir core material. The effluent profiles derived from the experiments then are fitted to a suitable mathematical model to express the behavior of each rock type through the use of a relatively small number of parameters. This paper illustrates the efficient application of the three-parameter, dispersion-capacitance model. Its application previously has been limited to use with small homogeneous plugs normally composed of intergranular and intencrystalline porosity, and its suitability for use with cores displaying macroscopic heterogeneity has been questioned. Consequently, in addition to illustrating its use with a homogeneous sandstone, we fit data derived from previously reported full-diameter carbonate cores. As noted earlier, these cores were heterogeneous, and each of them displayed different dual or multiple types of porosity characteristic of vugular and fractured carbonate rocks. Dispersion-Capacitance Model The displacement efficiency of one fluid by a second immiscible fluid within a porous medium depends on the complexity of rock and fluid properties. SPEJ P. 647^


Sign in / Sign up

Export Citation Format

Share Document