scholarly journals Performance Analysis of Dual-Polarized Massive MIMO System with Human-Care IoT Devices for Cellular Networks

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jun-Ki Hong

The performance analysis of the dual-polarized massive multiple-input multiple-output (MIMO) system with Internet of things (IoT) devices is studied when outdoor human-care IoT devices are connected to a cellular network via a dual-polarized massive MIMO system. The research background of the performance analysis of dual-polarized massive MIMO system with IoT devices is that recently the data usage of outdoor human-care IoT devices has increased. Therefore, the outdoor human-care IoT devices are necessary to connect with 5G cellular networks which can expect 1000 times higher performance compared with 4G cellular networks. Moreover, in order to guarantee the safety of the patient for emergency cases, a human-care Iot device must be connected to cellular networks which offer more stable communication for outdoors compared to short-range communication technologies such as Wi-Fi, Zigbee, and Bluetooth. To analyze the performance of the dual-polarized massive MIMO system for human-care IoT devices, a dual-polarized MIMO spatial channel model (SCM) is proposed which considers depolarization effect between the dual-polarized transmit-antennas and the receive-antennas. The simulation results show that the performance of the dual-polarized massive MIMO system is improved about 16% to 92% for 20 to 150 IoT devices compared to conventional single-polarized massive MIMO system for identical size of the transmit array.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Kumar Yadav ◽  
Pritam Keshari Sahoo ◽  
Yogendra Kumar Prajapati

Abstract Orthogonal frequency division multiplexing (OFDM) based massive multiuser (MU) multiple input multiple output (MIMO) system is popularly known as high peak-to-average power ratio (PAPR) issue. The OFDM-based massive MIMO system exhibits large number of antennas at Base Station (BS) due to the use of large number of high-power amplifiers (HPA). High PAPR causes HPAs to work in a nonlinear region, and hardware cost of nonlinear HPAs are very high and also power inefficient. Hence, to tackle this problem, this manuscript suggests a novel scheme based on the joint MU precoding and PAPR minimization (PP) expressed as a convex optimization problem solved by steepest gradient descent (GD) with μ-law companding approach. Therefore, we develop a new scheme mentioned to as MU-PP-GDs with μ-law companding to minimize PAPR by compressing and enlarging of massive MIMO OFDM signals simultaneously. At CCDF = 10−3, the proposed scheme (MU-PP-GDs with μ-law companding for Iterations = 100) minimizes the PAPR to 3.70 dB which is better than that of MU-PP-GDs, (iteration = 100) as shown in simulation results.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1552
Author(s):  
Tongzhou Han ◽  
Danfeng Zhao

In centralized massive multiple-input multiple-output (MIMO) systems, the channel hardening phenomenon can occur, in which the channel behaves as almost fully deterministic as the number of antennas increases. Nevertheless, in a cell-free massive MIMO system, the channel is less deterministic. In this paper, we propose using instantaneous channel state information (CSI) instead of statistical CSI to obtain the power control coefficient in cell-free massive MIMO. Access points (APs) and user equipment (UE) have sufficient time to obtain instantaneous CSI in a slowly time-varying channel environment. We derive the achievable downlink rate under instantaneous CSI for frequency division duplex (FDD) cell-free massive MIMO systems and apply the results to the power control coefficients. For FDD systems, quantized channel coefficients are proposed to reduce feedback overhead. The simulation results show that the spectral efficiency performance when using instantaneous CSI is approximately three times higher than that achieved using statistical CSI.


IET Networks ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 299-306 ◽  
Author(s):  
Rna Ghallab ◽  
Mona Shokair ◽  
Atef Abou El‐Azm ◽  
Ali Sakr ◽  
Waleed Saad ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6213
Author(s):  
Muhammad Irshad Zahoor ◽  
Zheng Dou ◽  
Syed Bilal Hussain Shah ◽  
Imran Ullah Khan ◽  
Sikander Ayub ◽  
...  

Due to large spectral efficiency and low power consumption, the Massive Multiple-Input-Multiple-Output (MIMO) became a promising technology for the 5G system. However, pilot contamination (PC) limits the performance of massive MIMO systems. Therefore, two pilot scheduling schemes (i.e., Fractional Pilot Reuse (FPR) and asynchronous fractional pilot scheduling scheme (AFPS)) are proposed, which significantly mitigated the PC in the uplink time division duplex (TDD) massive MIMO system. In the FPR scheme, all the users are distributed into the central cell and edge cell users depending upon their signal to interference plus noise ratio (SINR). Further, the capacity of central and edge users is derived in terms of sum-rate, and the ideal number of the pilot is calculated which significantly maximized the sum rate. In the proposed AFPS scheme, the users are grouped into central users and edge users depending upon the interference they receive. The central users are assigned the same set of pilots because these users are less affected by interference, while the edge users are assigned the orthogonal pilots because these users are severely affected by interference. Consequently, the pilot overhead is reduced and inter-cell interference (ICI) is minimized. Further, results verify that the proposed schemes outperform the previous proposed traditional schemes, in terms of improved sum rates.


2014 ◽  
Vol 716-717 ◽  
pp. 1194-1198
Author(s):  
Xiao Yu Li ◽  
Xiao Fei Zhang ◽  
Da Zhuan Xu ◽  
Qui Ming Zhu

This paper addresses the problem of the effect of different antenna layouts on the capacity of massive multiple-input multiple-output (MIMO) system capacity. Based on the narrow-band, flat fading channel model, the effect of scattering environment and antenna layout are considered by incorporating the power azimuth spectrum (PAS) and the array manifold vector. Under the same antenna aperture, six antenna layouts are investigated among which the UCA yields the best capacity while ULA yields the lowest capacity. The more symmetric the antenna geometry is, the better capacity performance it has.


2021 ◽  
Vol 11 (8) ◽  
pp. 3541
Author(s):  
Mário Marques da Silva ◽  
Rui Dinis

The aim of this article is to study the conventional and cooperative power-order Non-Orthogonal Multiple Access (NOMA) using the Single Carrier with Frequency Domain Equalization (SC-FDE) block transmission technique, associated with massive Multiple-Input Multiple-Output (MIMO), evidencing its added value in terms of spectral efficiency of such combined scheme. The new services provided by Fifth Generation of Cellular Communications (5G) are supported by new techniques, such as millimeter waves (mm-wave), alongside the conventional centimeter waves and by massive MIMO (m-MIMO) technology. NOMA is expected to be incorporated in future releases of 5G, as it tends to achieve a capacity gain, highly required for the massive number of Internet of things (IoT) devices, namely to support an efficient reuse of limited spectrum. This article shows that the combination of conventional and cooperative NOMA with m-MIMO and SC-FDE, tends to achieve capacity gains, while the performance only suffers a moderate degradation, being an acceptable alternative for future evolutions of 5G. Moreover, it is shown that Cooperative NOMA tends to outperform Conventional NOMA. Moreover, this article shows that the Maximum Ratio Combiner (MRC) receiver is very well fitted to be combined with NOMA and m-MIMO, as it achieves a good performance while reducing the receiver complexity.


2020 ◽  
Author(s):  
Yumeng Su ◽  
Hongyuan Gao ◽  
Shibo Zhang

Abstract With the advent of Internet of Everything (IoE) and the era of big data, massive multiple-input multiple-output (MIMO) is considered an essential technology to meet the growing communication requirements for beyond 5G and the forthcoming 6G networks. This paper considers a secure massive MIMO system, where the legitimate user and the base station (BS) exchange messages via two-way relays with the presence of passive eavesdroppers. To achieve the trade-off between the physical-layer security and communication reliability, we design a cooperative transmission mode based on multiple-relay collaboration, where some relays broadcast the received signals and other relays act as friendly jammers to prevent the interception by eavesdroppers. A quantum chemical reaction optimization (QCRO) algorithm is proposed to find the most suitable scheme for multiple-relay collaboration. Simulation results highlight excellent performance of the proposed transmission mode under QCRO in different communication scenarios, which can be considered a potential solution for the security issue in future wireless networks.


Author(s):  
Mahmoud Albreem

Massive multiple-input multiple-output (MIMO) is a key technology in fifth generation (5G) communication systems. Although the maximum likelihood (ML) obtains an optimal performance, it is prohibited in realization because of its high computational complexity. Linear detectors are an alternative solution, but they contain a matrix inversion which is not hardware friendly. Several methods have been proposed to approximate or to avoid the computation of exact matrix inversion. This chapter garners those methods and study their applicability in massive MIMO system so that a generalist in communication systems can differentiate between different algorithms from a wide range of solutions. This chapter presents the performance-complexity profile of a detector based on the Neuamnn-series (NS), Newton iteration (NI), successive over relaxation (SOR), Gauss-Seidel (GS), Jacobi (JA), Richardson (RI), optimized coordinate descent (OCD), and conjugate-gradient (CG) methods in 8×64, 16×64, and 32×64 MIMO sizes, and modulation scheme is 64QAM.


Author(s):  
Robin Chataut ◽  
Robert Akl

The global bandwidth shortage in the wireless communication sector has motivated the study and exploration of wireless access technology known as massive Multiple-Input Multiple-Output (MIMO). Massive MIMO is one of the key enabling technology for next-generation networks, which groups together antennas at both transmitter and the receiver to provide high spectral and energy efficiency using relatively simple processing. Obtaining a better understating of the massive MIMO system to overcome the fundamental issues such as pilot contamination, channel estimation, precoding, user scheduling, energy efficiency, and signal detection is vital for the successful deployment of 5G and beyond networks. Some of the recent trends in massive MIMO are terahertz communication, ultra massive MIMO (UM-MIMO), visible light communication (VLC), machine learning, and deep learning. 


Sign in / Sign up

Export Citation Format

Share Document