scholarly journals Effects of Packaging on Shelf Life and Postharvest Qualities of Radish Roots during Storage at Low Temperature for an Extended Period

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Dulal Chandra ◽  
Jung-Soo Lee ◽  
Hyun Jin Choi ◽  
Ji Gang Kim

To investigate the effects of packaging on the quality aspects of radish, Korean radish roots (Raphanus sativus L. var. Kwandong) were stored at 0°C after different packaging treatments such as keeping in paper cartoon box (control), keeping in plastic crates (PC), packaging with micro perforated HDPE film in PC (HDPE + PC), curing followed by keeping in PC (Curing + PC), and curing followed by packaging with micro perforated HDPE film in PC (Curing + HDPE + PC). Weight losses of radish roots were remarkably lower (<3%) in both HDPE film packaged samples compared to that of control (10%) or without film (≈18%). L⁎ values, whiteness index, total soluble solids, and flesh and skin firmness were better maintained in Curing + HDPE + PC treatment compared to other treatments. Lower color difference values were also found in this treatment. Both film packaged samples had lower scores of black spot, surface shrinkage, and fungal infection incidence which revealed significantly longer marketable periods. HDPE film packaged samples exhibited longer shelf life more than one and two months compared to control and unpacked samples, respectively. Results suggest that HDPE film packaging can extend postharvest life of radish while curing might have little but beneficial effects in maintaining the quality characteristics. To our knowledge, this is the first report on quality evaluation of Korean radish during an extended storage period simulating the Korean industrial practices.

2003 ◽  
Vol 60 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Wagner Ferreira da Mota ◽  
Luiz Carlos Chamhum Salomão ◽  
Paulo Roberto Cecon ◽  
Fernando Luiz Finger

The high perishability of the yellow passion fruit (Passiflora edulis f. flavicarpa) reduces its postharvest conservation and availability, mainly for in natura consumption. These losses of quality and commercial value occur due to the high respiration and loss of water. This work aimed to evaluate the influence of a modified atmosphere - wax emulsions and plastic film - on the shelf life of the yellow passion fruit. Plastic film (Cryovac D-955, 15 mum thickness) reduced fresh weight loss and fruit wilting, kept higher fruit and rind weight and higher pulp osmotic potential over the storage period. However, it was not efficient in the control of rottenness. Sparcitrus wax (22-23% polyethylene/maleyc resin) caused injury to the fruit, high fruit weight losses and wilting and resulted in lower pulp osmotic potential; this wax lead to a higher concentration of acid and a lower relation of soluble solids/acidity. Among the tested waxes, Fruit Wax (18-21% carnauba wax) was the best, promoting reduced weight loss, wilting and rottenness.


2017 ◽  
Vol 4 (1) ◽  
pp. 36-47
Author(s):  
R. Osae G. Essilfie J. O. Anim

The study was conducted to assess the effect of different waxing materials on the quality attributes of tomato fruits. A 2 x8 factorial experiment layout in complete randomized design with 16 treatment combinations and 3 replication was adopted.The materials that were used for the experiment are two (2) varieties of tomatoes (Pectomech and Power Rano) and seven(7) waxing material (shea butter, cassava starch, beeswax, and a combination of shea butter + cassava starch, shea butter + beeswax, cassava starch + beeswax, shea butter + cassava starch + beeswax) and a control. Results from the experiment indicated that all waxing treatments delayed the development of weight loss, firmness, pH, total soluble solids, and total titrable acidity. The results also suggested that edible wax coatings delayed the ripening process and colour development of tomato fruits during the storage period and extended the shelf life. However Beewax treatment and its combinations performed better than the other treatments. It was therefore recommended that locally produced wax such as Beewax, Shea butter, Cassava Starch treatments and their combinations could be a good technology for preserving the quality and extending the shelf life of fresh tomato fruit as well as maintaining the physical and chemical properties.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 478
Author(s):  
Stefania Toscano ◽  
Valeria Rizzo ◽  
Fabio Licciardello ◽  
Daniela Romano ◽  
Giuseppe Muratore

The aim of the study was to assess, through a comparative shelf-life test, the suitability of two packaging materials, namely macro-perforated polypropylene (PP MA) and micro-perforated coextruded polypropylene (PP C), for the quality preservation of green asparagus (Asparagus officinalis L. ‘Vegalim’). Quality of spears was evaluated during 30 days at refrigerated storage by monitoring chemical, physical, and enzymatic parameters as well as sensory descriptors. PP C kept headspace composition close to suggested values for fresh green asparagus. Total color difference increased during the storage and it was highly correlated with chlorophyll-a and carotenoids, however, sensory color perception did not change significantly until 22 days of storage. PP C maintained ascorbic acid concentrations close to the initial levels, limited total phenolic compound loss to 24% (45% in PP MA), determined an increase of 72% in fiber content and small changes in lignin value; enzymatic changes were significantly inhibited. Significant sensorial differences were detected after 22 days of storage, with PP C performing better than PP MA. PP C film was confirmed as the best choice, limiting weight loss and maintaining a fresh-like appearance during 30 days of storage, thus allowing an extension in postharvest life.


2019 ◽  
Vol 6 (4) ◽  
pp. 36-41
Author(s):  
Elaine Gleice Silva Moreira ◽  
Scarlet Aguiar Basílio ◽  
Mariany Dalila Milan ◽  
Natália Arruda ◽  
Katiane Santiago Silva Benett

Arugula is mainly cultivated by small producers, being a leafy vegetable susceptible to water loss and wilting after harvest, which may result in changes in appearance, texture, color (yellowing), and nutritional value of the product. Hydrocooling is a cooling method that stands out for being simple, practical and efficient. Its use is to reduce the temperature and respiratory rate of vegetables after harvesting by immersion in ice or cold water, so they can be packed and stored. This study was conducted to evaluate the hydrocooling efficiency when associated with the storage period in the postharvest shelf life of arugula leaves. Arugula leaves were subjected to ten days of storage, and measurements were taken at 0, 2, 4, 6, 8 and 10 days. The experimental design was completely randomized in a 3 × 6 factorial scheme, consisting of three hydrocooling treatments [control (without cooling), and hydrocooling at 0 °C and 10 °C] and for six storage periods (0, 2, 4, 6, 8 and 10 days) with three replicates. Fresh mass loss, soluble solids, titratable acidity, pH and subjective evaluation of product appearance were measured. Hydrocooling at 0 °C proved to be the most appropriate treatment when compared to control, as reported by the values of fresh mass loss, soluble solids, and titratable acidity. Hydrocooling to 0 °C slowed leaf water loss (lower respiratory rate) and resulted in better overall leaf appearance up to the sixth day of storage, thereby increasing shelf life of arugula leaves.


2019 ◽  
Vol 57 (2) ◽  
pp. 230-237 ◽  
Author(s):  
Yulian Tumbarski ◽  
Radosveta Nikolova ◽  
Nadezhda Petkova ◽  
Ivan Ivanov ◽  
Anna Lante

Bacteriocins are a large group of antimicrobial compounds that are synthesized by representatives of the genus Bacillus and lactic acid bacteria. They are used extensively in the food industry as biopreservatives. Incorporated in the composition of edible coatings, bacteriocins can reduce microbial growth and decay incidence in perishable fruits, thus improving product shelf-life and commercial appearance. The present study aims to investigate the effect of edible coatings of 0.5 % carboxymethyl cellulose (CMC) enriched with a purified bacteriocin from Bacillus methylotrophicus BM47 on the shelf-life extension of fresh strawberries. During storage at 4 °C and 75 % relative humidity for 16 days, the measurements of mass loss, decay percentage, total soluble solids (TSS), titratable acidity (TA), pH, organic acids, total phenolic and anthocyanin contents and antioxidant activity were made. The results demonstrate that the application of edible coatings with 0.5 % CMC and 0.5 % CMC with bacteriocin (CMC+B) led to a significant decrease of mass loss in the treated strawberries compared to the uncoated fruit. After the 8th day of storage, significant reductions in decay percentage along with the absence of fungal growth in CMC+B-coated fruit were observed in comparison with the CMC-coated and control strawberries. During the second half of the storage period, CMC and CMC+B treatments reduced TSS amount in the coated fruit compared to the control, but did not affect the increase of TA and decrease of pH values that are normally associated with postharvest changes. The CMC and CMC+B coatings did not prevent the decrease of ascorbic acid, and total phenolic and anthocyanin contents during cold storage. The application of CMC and CMC+B coatings had a significant inhibitory effect on decreasing the antioxidant activity throughout the storage period and maintained the antioxidant levels in both treatments close to the initial value of 76.8 mmol Trolox equivalents per 100 g of fresh mass.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 590 ◽  
Author(s):  
Antonio López-Gómez ◽  
María Ros-Chumillas ◽  
Laura Buendía-Moreno ◽  
Laura Navarro-Segura ◽  
Ginés Benito Martínez-Hernández

Mandarins are usually sold in bulk and refrigerated in open cardboard boxes with a relatively short shelf-life (12–15 days) due to physiological and pathological disorders (rot, dehydration, internal breakdown, etc.). The influence of a controlled release of essential oils (EOs) from an active packaging (including β-cyclodextrin-EOs inclusion complex) was studied on the mandarin quality stability, comparing different sized cardboard trays and boxes, either non-active or active, at the pilot plant scale (experiment 1; commercialization simulation at room temperature after a previous simulation of short transportation/storage of 5 days at 8 °C). Then, the selected package was further validated at the industrial scale (experiment 2; cold storage at 8 °C up to 21 days). Among package types, the active large box (≈10 kg fruit per box) better maintained the mandarin quality, extending the shelf life from two weeks (non-active large box) to three weeks at room temperature. Particularly, the active large box highly controlled microbial growth (up to two log units), reduced weight losses (by 1.6-fold), reduced acidity, and increased soluble solids (highly appreciated in sensory analyses), while it minimized colour and controlled firmness changes after three weeks. Such trends were also observed during the validation experiment, extending the shelf life (based on sensory quality) from 14 to at least 21 days. In conclusion, the mandarin’s shelf life with this active cardboard box format was extended more than one week at 8 °C.


2016 ◽  
Vol 13 (1) ◽  
pp. 131-136 ◽  
Author(s):  
MR Sharmin ◽  
MN Islam ◽  
MA Alim

In this experiment the effects of aloe vera gel coating on storage behavior of papaya at room temperature (290C-310C) was studied. Physico-chemical parameters such as color, physical changes, moisture, ash, acidity, vitamin C, protein, fat and total soluble solids (TSS) of papaya and aloe vera was determined at 3 days interval during the storage period. Among the physico-chemical parameters, color, physical changes, total weight loss and TSS contents increased significantly, whereas moisture content, vitamin C and titrable acidity decreased during storage. Control and 0.5% aloe vera treated papaya decayed from 6 days onward and completely decayed within 12 days of storage. On the other hand, 1% and 1.5% aloe vera gel coated papaya maintained their shelf-life for 9 and 12 days, respectively. Some of 1.5% aloe vera coated papaya decayed after 15 days. Papaya treated with 1.5% aloe vera solution, maintained their color & physical changes compared to other treatments up to 12 days of storage. The overall results showed the superiority of 1.5% aloe vera gel coating in extending the shelf-life of papaya upto 15 days compared to that of 0.5%, 1% aloe vera gel coating and control papaya. The present study describes the preparation and potential application of aloe vera gel coatings for enhancing the postharvest life and quality of papaya.J. Bangladesh Agril. Univ. 13(1): 131-136, June 2015


Author(s):  
Suchismita Jena ◽  
Ramesh K. Goyal ◽  
Anil K. Godhara ◽  
Abhilash Mishra

Aims:  To evaluate the potentiality of bio-extract coatings for achieving extended shelf life with enhance fruit quality attributes in pomegranate under ambient storage condition.  Study Design:  The lab experiment conducted in complete randomized design with three repetitions on Mridula cultivar of pomegranate.     Place and Duration of Study:  The experiment was conducted during September 2016 at department of fruit science, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India. Methodology: Pomegranate freshly harvested fruits were coated with three bio-extracts coatings viz. Aloe vera (50,75 and 100%), ginger (1,2 and 3%) and mints (10,20 and 30%). The coated fruits were stored at ambient room condition in corrugated fiber board boxes for twelve days.  Periodically effects of bio-extract coatings, storage period and their interaction were observed for physiological loss in weight, decay loss, juice content, TSS: acid ratio, ascorbic acid content and anthocyanin content.    Results: Surface coating with Aloe vera extract 100% was found most effective in reducing physiological loss in weight (50% less reduction as compared to untreated control) whereas ginger extract 3% in reducing the decay loss of fruits (9.65%) as compared to untreated control (23.36%). Among various treatments, the coating of pomegranate fruits with Aloe vera extract 100% resulted in lowest total soluble solids to acid ratio (32.17%) and significantly highest content of juice (47.17%), anthocyanin (13.98 mg/100 g) and ascorbic acid (12.82 mg/100 g) of the fruits along with highest organoleptic rating. The quality attributes viz. total soluble solids to acid ratio, anthocyanin of fruits increased with progression of storage period, while juice content and ascorbic acid decreased. Conclusion: Bio-extract coating of Aloe vera (100%) substantially improved the shelf life with retaining better fruit quality attributes under ambient conditions and has the potential to substitute the prevalent chemical coatings for pomegranate.  


2012 ◽  
Vol 200 ◽  
pp. 305-311
Author(s):  
Dong Li Li ◽  
Wen Cai Xu ◽  
Zun Zhong Liu ◽  
Ya Bo Fu ◽  
Ya Jun Wang

An active packaging film (APF1) with releasing low concentration sulfur dioxide (SO2) was tested on quality of ‘vitis labruscana kyoho’ table grape. All samples were stored at 5°C and during the storage period the main quality parameters, weight loss, berries shatter, decay, firmness, total soluble solids content (TSS), total acid (TA, using the PH of grape juice instead of the TA ), Vitamin c (Vc) content were monitored and compared with the control sample unpacked in any film. Results demonstrated that APF1 could reduce water loss of table grapes, prevent it from pathogens infection. The results also showed that APF1 could greatly guarantee a long shelf life for grape. After storage 56 days (storage at 0~5°C), the water loss, berry firmness, TA and Vc content in grapes packaged in APF1 were slowly reduced, TSS was slight increased, percentage of shatter and decayed berries of grapes were 22% and 27%, respectively. The percentage of berries decay of grapes packaged in APF1 was reduced to 5% from 21% for control batches on 11th days. All unpackaged table grapes (control batches) were decayed after 28 days. APF1 would help to preserve quality and extend shelf life of table grapes.


2019 ◽  
Vol 6 (1) ◽  
pp. 41-54
Author(s):  
Md. Belal Hossain Sikder ◽  
M Muksitu Islam

Banana is highly perishable fruit and shelf life is short, which leads resulting post-harvest loss consistently in Bangladesh. To lessen the post-harvest loss and draw out the time span of the usability of banana, green mature bananas were treated with 0.5%, 0.75%, and 1% chitosan, individually. For the subsequent treatments, bananas were stored at room temperature. The viability of the coating in extending fruit’s shelf-life was assessed by evaluated total weight loss, ash content, total soluble solids (TSS), pH, titratable acidity (TA), disease severity and shelf life during the storage period. Chitosan coating reduced respiration activity, thus delaying ripening and the rate of decay due to senescence. The chitosan-coated banana samples had a better outcome on weight loss, ash content, pH, TSS, TA and disease severity values as compared to control samples. Banana coated with 1% chitosan showed less weight reduction and lessened obscuring than different treatments and control. Disease severity was astoundingly lessened by chitosan covering application. Chitosan coating extended banana up to the shelf life of more 2 to 4 days. From this investigation, it demonstrated that 1% chitosan was more appropriate in extending the shelf-life and better quality of banana during ripening and storage at ambient temperature.


Sign in / Sign up

Export Citation Format

Share Document