scholarly journals A Modified Sine-Cosine Algorithm Based on Neighborhood Search and Greedy Levy Mutation

2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Chiwen Qu ◽  
Zhiliu Zeng ◽  
Jun Dai ◽  
Zhongjun Yi ◽  
Wei He

For the deficiency of the basic sine-cosine algorithm in dealing with global optimization problems such as the low solution precision and the slow convergence speed, a new improved sine-cosine algorithm is proposed in this paper. The improvement involves three optimization strategies. Firstly, the method of exponential decreasing conversion parameter and linear decreasing inertia weight is adopted to balance the global exploration and local development ability of the algorithm. Secondly, it uses the random individuals near the optimal individuals to replace the optimal individuals in the primary algorithm, which allows the algorithm to easily jump out of the local optimum and increases the search range effectively. Finally, the greedy Levy mutation strategy is used for the optimal individuals to enhance the local development ability of the algorithm. The experimental results show that the proposed algorithm can effectively avoid falling into the local optimum, and it has faster convergence speed and higher optimization accuracy.

2021 ◽  
Vol 11 (23) ◽  
pp. 11192
Author(s):  
Xiaoxu Yang ◽  
Jie Liu ◽  
Yi Liu ◽  
Peng Xu ◽  
Ling Yu ◽  
...  

Aiming at the problems of the basic sparrow search algorithm (SSA) in terms of slow convergence speed and the ease of falling into the local optimum, the chaotic mapping strategy, adaptive weighting strategy and t-distribution mutation strategy are introduced to develop a novel adaptive sparrow search algorithm, namely the CWTSSA in this paper. In the proposed CWTSSA, the chaotic mapping strategy is employed to initialize the population in order to enhance the population diversity. The adaptive weighting strategy is applied to balance the capabilities of local mining and global exploration, and improve the convergence speed. An adaptive t-distribution mutation operator is designed, which uses the iteration number t as the degree of freedom parameter of the t-distribution to improve the characteristic of global exploration and local exploration abilities, so as to avoid falling into the local optimum. In order to prove the effectiveness of the CWTSSA, 15 standard test functions and other improved SSAs, differential evolution (DE), particle swarm optimization (PSO), gray wolf optimization (GWO) are selected here. The compared experiment results indicate that the proposed CWTSSA can obtain higher convergence accuracy, faster convergence speed, better diversity and exploration abilities. It provides a new optimization algorithm for solving complex optimization problems.


2015 ◽  
Vol 24 (05) ◽  
pp. 1550017 ◽  
Author(s):  
Aderemi Oluyinka Adewumi ◽  
Akugbe Martins Arasomwan

This paper presents an improved particle swarm optimization (PSO) technique for global optimization. Many variants of the technique have been proposed in literature. However, two major things characterize many of these variants namely, static search space and velocity limits, which bound their flexibilities in obtaining optimal solutions for many optimization problems. Furthermore, the problem of premature convergence persists in many variants despite the introduction of additional parameters such as inertia weight and extra computation ability. This paper proposes an improved PSO algorithm without inertia weight. The proposed algorithm dynamically adjusts the search space and velocity limits for the swarm in each iteration by picking the highest and lowest values among all the dimensions of the particles, calculates their absolute values and then uses the higher of the two values to define a new search range and velocity limits for next iteration. The efficiency and performance of the proposed algorithm was shown using popular benchmark global optimization problems with low and high dimensions. Results obtained demonstrate better convergence speed and precision, stability, robustness with better global search ability when compared with six recent variants of the original algorithm.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Li Mao ◽  
Yu Mao ◽  
Changxi Zhou ◽  
Chaofeng Li ◽  
Xiao Wei ◽  
...  

Artificial bee colony (ABC) algorithm has good performance in discovering the optimal solutions to difficult optimization problems, but it has weak local search ability and easily plunges into local optimum. In this paper, we introduce the chemotactic behavior of Bacterial Foraging Optimization into employed bees and adopt the principle of moving the particles toward the best solutions in the particle swarm optimization to improve the global search ability of onlooker bees and gain a hybrid artificial bee colony (HABC) algorithm. To obtain a global optimal solution efficiently, we make HABC algorithm converge rapidly in the early stages of the search process, and the search range contracts dynamically during the late stages. Our experimental results on 16 benchmark functions of CEC 2014 show that HABC achieves significant improvement at accuracy and convergence rate, compared with the standard ABC, best-so-far ABC, directed ABC, Gaussian ABC, improved ABC, and memetic ABC algorithms.


2021 ◽  
pp. 1-17
Author(s):  
Maodong Li ◽  
Guanghui Xu ◽  
Yuanwang Fu ◽  
Tingwei Zhang ◽  
Li Du

 In this paper, a whale optimization algorithm based on adaptive inertia weight and variable spiral position updating strategy is proposed. The improved algorithm is used to solve the problem that the whale optimization algorithm is more dependent on the randomness of the parameters, so that the algorithm’s convergence accuracy and convergence speed are insufficient. The adaptive inertia weight, which varies with the fitness of individual whales, is used to balance the algorithm’s global search ability and local exploitation ability. The variable spiral position update strategy based on the collaborative convergence mechanism is used to dynamically adjust the search range and search accuracy of the algorithm. The effective combination of the two can make the improved whale optimization algorithm converge to the optimal solution faster. It had been used 18 international standard test functions, including unimodal function, multimodal function, and fixed-dimensional function to test the improved whale optimization algorithm in this paper. The test results show that the improved algorithm has faster convergence speed and higher algorithm accuracy than the original algorithm and several classic algorithms. The algorithm can quickly converge to near the optimal value in the early stage, and then effectively jump out of the local optimal through adaptive adjustment, and has a certain ability to solve large-scale optimization problems.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Yongzhao Du ◽  
Yuling Fan ◽  
Xiaofang Liu ◽  
Yanmin Luo ◽  
Jianeng Tang ◽  
...  

A multiscale cooperative differential evolution algorithm is proposed to solve the problems of narrow search range at the early stage and slow convergence at the later stage in the performance of the traditional differential evolution algorithms. Firstly, the population structure of multipopulation mechanism is adopted so that each subpopulation is combined with a corresponding mutation strategy to ensure the individual diversity during evolution. Then, the covariance learning among populations is developed to establish a suitable rotating coordinate system for cross operation. Meanwhile, an adaptive parameter adjustment strategy is introduced to balance the population survey and convergence. Finally, the proposed algorithm is tested on the CEC 2005 benchmark function and compared with other state-of-the-art evolutionary algorithms. The experiment results showed that the proposed algorithm has better performance in solving global optimization problems than other compared algorithms.


2018 ◽  
Vol 232 ◽  
pp. 03015
Author(s):  
Changjun Wen ◽  
Changlian Liu ◽  
Heng Zhang ◽  
Hongliang Wang

The particle swarm optimization (PSO) is a widely used tool for solving optimization problems in the field of engineering technology. However, PSO is likely to fall into local optimum, which has the disadvantages of slow convergence speed and low convergence precision. In view of the above shortcomings, a particle swarm optimization with Gaussian disturbance is proposed. With introducing the Gaussian disturbance in the self-cognition part and social cognition part of the algorithm, this method can improve the convergence speed and precision of the algorithm, which can also improve the ability of the algorithm to escape the local optimal solution. The algorithm is simulated by Griewank function after the several evolutionary modes of GDPSO algorithm are analyzed. The experimental results show that the convergence speed and the optimization precision of the GDPSO is better than that of PSO.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Xing Wei ◽  
Lei Liu ◽  
Yongji Wang ◽  
Ye Yang

Generation of optimal reentry trajectory for a hypersonic vehicle (HV) satisfying both boundary conditions and path constraints is a challenging task. As a relatively new swarm intelligent algorithm, an adaptive fireworks algorithm (AFWA) has exhibited promising performance on some optimization problems. However, with respect to the optimal reentry trajectory generation under constraints, the AFWA may fall into local optimum, since the individuals including fireworks and sparks are not well informed by the whole swarm. In this paper, we propose an improved AFWA to generate the optimal reentry trajectory under constraints. First, via the Chebyshev polynomial interpolation, the trajectory optimization problem with infinite dimensions is transformed to a nonlinear programming problem (NLP) with finite dimension, and the scope of angle of attack (AOA) is obtained by path constraints to reduce the difficulty of the optimization. To solve the problem, an improved AFWA with a new mutation strategy is developed, where the fireworks can learn from more individuals by the new mutation operator. This strategy significantly enhances the interactions between the fireworks and sparks and thus increases the diversity of population and improves the global search capability. Besides, a constraint-handling technique based on an adaptive penalty function and distance measure is developed to deal with multiple constraints. The numerical simulations of two reentry scenarios for HV demonstrate the validity and effectiveness of the proposed improved AFWA optimization method, when compared with other optimization methods.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254239
Author(s):  
Xuan Chen ◽  
Feng Cheng ◽  
Cong Liu ◽  
Long Cheng ◽  
Yin Mao

Wolf Pack Algorithm (WPA) is a swarm intelligence algorithm that simulates the food searching process of wolves. It is widely used in various engineering optimization problems due to its global convergence and computational robustness. However, the algorithm has some weaknesses such as low convergence speed and easily falling into local optimum. To tackle the problems, we introduce an improved approach called OGL-WPA in this work, based on the employments of Opposition-based learning and Genetic algorithm with Levy’s flight. Specifically, in OGL-WPA, the population of wolves is initialized by opposition-based learning to maintain the diversity of the initial population during global search. Meanwhile, the leader wolf is selected by genetic algorithm to avoid falling into local optimum and the round-up behavior is optimized by Levy’s flight to coordinate the global exploration and local development capabilities. We present the detailed design of our algorithm and compare it with some other nature-inspired metaheuristic algorithms using various classical test functions. The experimental results show that the proposed algorithm has better global and local search capability, especially in the presence of multi-peak and high-dimensional functions.


2021 ◽  
Vol 2021 ◽  
pp. 1-32
Author(s):  
Qiuyu Li ◽  
Zhiteng Ma

Particle swarm optimization (PSO) is a common metaheuristic algorithm. However, when dealing with practical engineering structure optimization problems, it is prone to premature convergence during the search process and falls into a local optimum. To strengthen its performance, combining several ideas of the differential evolution algorithm (DE), a dynamic probability mutation particle swarm optimization with chaotic inertia weight (CWDEPSO) is proposed. The main improvements are achieved by improving the parameters and algorithm mechanism in this paper. The former proposes a novel inverse tangent chaotic inertia weight and sine learning factors. Besides, the scaling factor and crossover probability are improved by random distributions, respectively. The latter introduces a monitoring mechanism. By monitoring the convergence of PSO, a developed mutation operator with a more reliable local search capability is adopted and increases population diversity to help PSO escape from the local optimum effectively. To evaluate the effectiveness of the CWDEPSO algorithm, 24 benchmark functions and two groups of engineering optimization experiments are used for numerical and engineering optimization, respectively. The results indicate CWDEPSO offers better convergence accuracy and speed compared with some well-known metaheuristic algorithms.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Chiwen Qu ◽  
Shi’an Zhao ◽  
Yanming Fu ◽  
Wei He

Chicken swarm optimization is a new intelligent bionic algorithm, simulating the chicken swarm searching for food in nature. Basic algorithm is likely to fall into a local optimum and has a slow convergence rate. Aiming at these deficiencies, an improved chicken swarm optimization algorithm based on elite opposition-based learning is proposed. In cock swarm, random search based on adaptive t distribution is adopted to replace that based on Gaussian distribution so as to balance the global exploitation ability and local development ability of the algorithm. In hen swarm, elite opposition-based learning is introduced to promote the population diversity. Dimension-by-dimension greedy search mode is used to do local search for individual of optimal chicken swarm in order to improve optimization precision. According to the test results of 18 standard test functions and 2 engineering structure optimization problems, this algorithm has better effect on optimization precision and speed compared with basic chicken algorithm and other intelligent optimization algorithms.


Sign in / Sign up

Export Citation Format

Share Document