scholarly journals Mechanical Behavior and Damage Evolution for Granite Subjected to Cyclic Loading

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zhiliang Wang ◽  
Jikang Yao ◽  
Nuocheng Tian ◽  
Jingbin Zheng ◽  
Peng Gao

This paper focuses on the mechanical behavior and damage evolution of Huashan granite subjected to cyclic loading. Four levels of confining pressure (0, 15, 25, and 35 MPa) were applied during cyclic axial loading by using a Rock Test System (MTS815) along with an acoustic emission (AE) monitoring device. Experimental results indicate that the number of AE activities is higher under cyclic triaxial loading compared to that under cyclic uniaxial loading. The measured stress-strain curves of both uniaxial and triaxial tests under cyclic loading are concave-up, but the degree of concavity is mild for the latter. As the cycle number rises, elastic modulus of the granite sample under different confining pressures increases. The slope of the peak strength versus confining pressure plot for the cyclic loading is larger than that for the monotonic loading. Besides, it is found that the dissipated energy increases with the increase of cyclic stress, but it hardly increases in proportion with the confining pressure. The damage parameters defined in terms of the plastic strain can be extended for the whole cyclic loading process, and they agree well with the energy-based damage parameters.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yongjie Yang ◽  
Huiqiang Duan ◽  
Luyi Xing ◽  
Shan Ning ◽  
Jiakun Lv

This paper presents an experimental investigation of the fatigue properties of limestone subjected to triaxial compression with axial cyclic loading. Tests were conducted on intact limestone samples with a loading frequency of 0.5 Hz and a confining pressure of 10 MPa. The test results show the following five points. (1) Under triaxial conditions, the axial and circumferential deformations at the failure point induced by cyclic loading are slightly larger than the corresponding deformations at the peak stress achieved by conventional compression tests. (2) The first level cyclic loading process has a strong influence on rock deformation in the primary phase during subsequent level cyclic loading. A smaller difference in stress amplitude between the two loading stress levels leads to less deformation during the latter. (3) Circumferential and volumetric changes are more sensitive to fatigue failure in terms of deformation and strain rate than axial changes. (4) The three phases of dissipated energy evolution are consistent with a sample’s deformation such that the energy dissipation characteristics reflect the fatigue damage evolution process. (5) A new damage formula is proposed that can concisely describe a rock’s zero-cycle damage and damage evolution.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Huiqiang Duan ◽  
Depeng Ma

The damage and failure state of the loaded coal and rock masses is indirectly reflected by its acoustic emission (AE) characteristics. Therefore, it is of great significance to study the AE evolution of loaded coal and rock masses for the evaluation of damage degree and prediction of collapse. The paper mainly represents a numerical simulation investigation of the AE characteristics of coal specimen subjected to cyclic loading under three confining pressures, loading-unloading rates, and valley stresses. From the numerical simulation tests, the following conclusions can be drawn: (1) The final cycle number of coal specimen subjected to cyclic loading is significantly influenced by the confining pressure, followed the valley stress. With the increase in confining pressure or valley stress, the cycle number tends to increase. However, the loading-unloading rate has a little influence on it. (2) The AE counts of coal specimen subjected to cyclic loading are greatly influenced by the confining pressure and the valley stress. With the increase in the confining pressure, the cumulative AE counts at the 1st cycle tend to increase but decrease at a cycle before failure; with the decrease in the valley stress, the cumulative AE counts per cycle increase in the relatively quiet phase. However, the loading-unloading rate has a little influence on it. (3) The failure mode of coal specimen subjected to cyclic loading is significantly influenced by the confining pressure. Under the uniaxial stress state, there is an inclined main fractured plane in the coal specimen, under the confining pressures of 5 and 10 MPa, the coal specimen represents dispersion failure. The loading-unloading rate and valley stress have little influence on it. (4) The AE ratio is proposed, and its evolution can better reflect the different stages of coal specimen failure under cyclic loading. (5) The influence of confining pressure on the broken degree of coal specimen subjected to cyclic loading is analyzed, and the higher the confining pressure, the more broken the failed coal specimen.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Baoyun Zhao ◽  
Dongyan Liu ◽  
Ziyun Li ◽  
Wei Huang ◽  
Qian Dong

In order to investigate the mechanical behavior of shale rock under cyclic loading and unloading condition, two kinds of incremental cyclic loading tests were conducted. Based on the result of the short-term uniaxial incremental cyclic loading test, the permanent residual strain, modulus, and damage evolution were analyzed firstly. Results showed that the relationship between the residual strains and the cycle number can be expressed by an exponential function. The deformation modulus E50 and elastic modulus ES first increased and then decreased with the peak stress under the loading condition, and both of them increased approximately linearly with the peak stress under the unloading condition. On the basis of the energy dissipation, the damage variables showed an exponential increasing with the strain at peak stress. The creep behavior of the shale rock was also analyzed. Results showed that there are obvious instantaneous strain, decay creep, and steady creep under each stress level and the specimen appears the accelerated creep stage under the 4th stress of 51.16 MPa. Based on the characteristics of the Burgers creep model, a viscoelastic-plastic creep model was proposed through viscoplastic mechanics, which agrees very well with the experimental results and can better describe the creep behavior of shale rock better than the Burgers creep model. Results can provide some mechanics reference evidence for shale gas development.


Author(s):  
Yufeng Zhao ◽  
Heinz Konietzky ◽  
Martin Herbst

AbstractAlong with the advance of the working face, coal experiences different loading stages. Laboratory tests and numerical simulations of fracture and damage evolution aim to better understand the structural stability of coal layers. Three-dimensional lab tests are performed and coal samples are reconstructed using X-ray computer tomography (CT) technique to get detailed information about damage and deformation state. Three-dimensional discrete element method (DEM)-based numerical models are generated. All models are calibrated against the results obtained from uniaxial compressive strength (UCS) tests and triaxial compression (TRX) tests performed in the laboratory. A new approach to simulate triaxial compression tests is established in this work with significant improved handling of the confinement to get realistic simulation results. Triaxial tests are simulated in 3D with the particle-based code PFC3D using a newly developed flexible wall (FW) approach. This new numerical simulation approach is validated by comparison with laboratory tests on coal samples. This approach involves an updating of the applied force on each wall element based on the flexible nature of a rubber sleeve. With the new FW approach, the influence of the composition (matrix and inclusions) of the samples on the peak strength is verified. Force chain development and crack distributions are also affected by the spatial distribution of inclusions inside the sample. Fractures propagate through the samples easily at low confining pressures. On the contrary, at high confining pressure, only a few main fractures are generated with orientation towards the side surfaces. The evolution of the internal fracture network is investigated. The development of microcracks is quantified by considering loading, confinement, and structural character of the rock samples. The majority of fractures are initiated at the boundary between matrix and inclusions, and propagate along their boundaries. The internal structure, especially the distribution of inclusions has significant influence on strength, deformation, and damage pattern.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Rui Yang ◽  
Xiaodi Wang ◽  
Hao Zha ◽  
Xiuzhang Yang ◽  
Yang Zhang ◽  
...  

The mechanical response characteristics of rocks under cyclic loading conditions are crucial factors for evaluating and analyzing the stability of rock mass during underground excavation. In this study, based on fractal theory and a series of tests using the MTS815.02 rock mechanics test system, the classification and fractal characteristics of limestone specimen fragments are investigated. The results show that limestone specimens subjected to cyclic loading can generate more small-sized fragments than conventional compression, but the large-fragment-producing abilities of the two tests exhibit small difference. The mass fraction of the fragments in the cyclic loading test is obviously greater than that in the conventional test when the fragment size is less than 4.75 mm; however, only a small difference is observed between the cyclic loading tests with frequencies of 0.25 and 0.5 Hz. In the same type of test, a confining pressure is helpful in reducing the fragmentation of limestone specimen. As the size interval decreases, the shapes of limestone fragment transition from rectangular to long slice and then to square. The results also indicate that the confining pressure has a significant influence on the size-quantity and size-mass fractal dimensions of limestone fragments. The former has a positive correlation with the confining pressure, whereas the latter decreases with confining pressure. The conclusions obtained in this investigation can enrich the theoretical research on the failure response and mechanism of rock under cyclic loading conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yang Zhou ◽  
Shengrui Su ◽  
Peng Li

Many geological engineering hazards are closely related to the dynamic mechanical behaviors of rock materials. However, the dynamic mechanical behaviors of phyllite are less studied. In this study, we have carried out a series of triaxial cyclic tests on dry and water-saturated phyllite by employing the MTS 815 servohydraulic testing system and AE testing equipment to reveal the mechanical behavior, energy release, and crack distribution characteristics of phyllite. Results show that phyllite is a water-sensitive rock. Water and cyclic loading substantially affect the compressive strength, crack damage stress, deformation parameters, dilatancy, energy release, and crack distribution characteristics of phyllite. Furthermore, based on the dissipated energy, a new damage variable for phyllite is established. The critical damage variable for phyllite is approximately 0.80; this variable can be used as an index to predict the failure of phyllite. The water saturation effect of phyllite is very obvious; that is, it results in the weakness of mechanical properties of phyllite and changes the AE energy release and crack distribution characteristics of phyllite. This research can provide guidance for engineering construction and disaster prevention and control.


2021 ◽  
Vol 11 (24) ◽  
pp. 12001
Author(s):  
Yue Qin ◽  
Dongsheng Xu ◽  
Borana Lalit

The bentonite is commonly used mixed with soils for groundwater retention and waste contaminant facilities. The incorporation of bentonite could significantly reduce hydraulic conductivity. In this study, the effects of bentonite content, hydration time and effective confining pressure on the static properties of a sand–bentonite mixture were studied using experimental and numerical methods. Firstly, a large number of drainage static triaxial tests on the sand–bentonite mixture with various bentonite contents were conducted. The test results show that the increase in bentonite content and hydration time leads to a slight decrease in shear strength and initial tangent modulus of the sand–bentonite mixture. The presence of bentonite reduces the shear shrinkage and dilatancy trend of the mixture. The cohesion of the mixture increases with the increase in bentonite content and hydration time, but the internal friction angle decreases correspondingly. The hydration of bentonite on the surface of sand particles changes the contact form between particles. The bentonite slurry between pores of the sand skeleton also affects the mechanical behavior of the sand–bentonite mixture. Then, a series of 3D discrete element models were established for numerical simulations of drainage static triaxial tests. The numerical model parameters were calibrated by experimental results. The meso-mechanism of bentonite content affecting the mechanical behavior was revealed according to the contact force distribution between particles. The research results are helpful to understand further the mechanism of bentonite on the mechanical properties of the sand–bentonite mixture.


Sign in / Sign up

Export Citation Format

Share Document