scholarly journals Beneficial Effects of Concentrated Growth Factors and Resveratrol on Human Osteoblasts In Vitro Treated with Bisphosphonates

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Elisa Borsani ◽  
Veronica Bonazza ◽  
Barbara Buffoli ◽  
Pier Francesco Nocini ◽  
Massimo Albanese ◽  
...  

Bisphosphonates are primary pharmacological agents against osteoclast-mediated bone loss and widely used in the clinical practice for prevention and treatment of a variety of skeletal conditions, such as low bone density and osteogenesis imperfecta, and pathologies, such as osteoporosis, malignancies metastatic to bone, Paget disease of bone, multiple myeloma, and hypercalcemia of malignancy. However, long-term bisphosphonate treatment is associated with pathologic conditions including osteonecrosis of the jaw, named BRONJ, which impaired bone regeneration process. Clinical management of BRONJ is controversy and one recent approach is the use of platelet concentrates, such as Concentrated Growth Factors, alone or together with biomaterials or antioxidants molecules, such as resveratrol. The aim of the present study was to investigate the in vitro effects of Concentrated Growth Factors and/or resveratrol on the proliferation and differentiation of human osteoblasts, treated or not with bisphosphonates. Human osteoblasts were stimulated for 3 days in complete medium and for 21 days in mineralization medium. At the end of the experimental period, the in vitro effect on osteoblast proliferation and differentiation was evaluated using different techniques such as MTT, ELISA for the quantification/detection of osteoprotegerin and bone morphogenetic protein-2, immunohistochemistry for sirtuin 1 and collagen type I, and the Alizarin Red S staining for the rate of mineralization. Results obtained showed that Concentrated Growth Factors and/or resveratrol significantly increased osteoblast proliferation and differentiation and that the cotreatment with Concentrated Growth Factors and resveratrol had a protective role on osteoblasts treated with bisphosphonates. In conclusion, these data suggest that this approach could be promised in the clinical management of BRONJ.

Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2637 ◽  
Author(s):  
Magdalena Mizerska-Kowalska ◽  
Adrianna Sławińska-Brych ◽  
Katarzyna Kaławaj ◽  
Aleksandra Żurek ◽  
Beata Pawińska ◽  
...  

Although betulin (BET), a naturally occurring pentacyclic triterpene, has a variety of biological activities, its osteogenic potential has not been investigated so far. The aim of this study was to assess the effect of BET on differentiation of human osteoblasts (hFOB 1.19 and Saos-2 cells) in vitro in osteogenic (with ascorbic acid as an osteogenic supplement) and osteoinductive (without an additional osteogenic supplement) conditions. Osteoblast differentiation was evaluated based on the mRNA expression (RT-qPCR) of Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), type I collagen-α1 (COL1A1), and osteopontin (OPN). Additionally, ALP activity and production of COL1A1 (western blot analysis) and OPN (ELISA) were evaluated. The level of mineralization (calcium accumulation) was determined with Alizarin red S staining. BET upregulated the mRNA level of RUNX2 and the expression of other osteoblast differentiation markers in both cell lines (except the influence of BET on ALP expression/activity in the Saos-2 cells). Moreover, it increased mineralization in both cell lines in the osteogenic conditions. BET also increased the mRNA level of osteoblast differentiation markers in both cell lines (except for ALP in the Saos-2 cells) in the osteoinductive conditions, which was accompanied with increased matrix mineralization. The osteoinductive activity of BET in the hFOB 1.19 cells was probably mediated via activation of MAPKs (JNK and ERK1/2) and mTOR, as the specific inhibitors of these kinases abolished the BET-induced osteoblast differentiation. Our results suggest that BET has the potential to enhance osteogenesis.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1681
Author(s):  
Fiedler Jörg ◽  
Katmer Amet Betül ◽  
Michels Heiner ◽  
Kappelt Gerhard ◽  
Brenner Rolf Erwin

(1) In order to enable a more widespread use of uncemented titanium-based endoprostheses to replace cobalt-containing cemented endoprostheses for joint replacement, it is essential to achieve optimal osseointegrative properties and develop economic fabrication processes while retaining the highest biomedical quality of titanium materials. One approach is the usage of an optimized form of Ti6Al4V-precision casting for manufacturing. Besides the chemical and physical properties, it is necessary to investigate possible biological influences in order to test whether the new manufacturing process is equivalent to conventional methods. (2) Methods: Primary human osteoblasts were seeded on discs, which were produced by a novel Ti6Al4V centrifugal-casting process in comparison with standard machined discs of the same titanium alloy. In a second step, the surfaces were modified by calcium or phosphorus ion beam implantation. In vitro, we analyzed the effects on proliferation, differentiation, and apoptotic processes. (3) Results: SEM analysis of cells seeded on the surfaces showed no obvious differences between the reference material and the cast material with or without ion implantation. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) proliferation assay also did not reveal any significant differences. Additionally, the osteogenic differentiation process tested by quantitative polymerase chain reactions (PCR), Alizarin red S assay, and C-terminal collagen type I propeptide (CICP) Elisa was not significantly modified. No signs of induced apoptosis were observed. (4) Conclusions: In this study, we could show that the newly developed process of centrifugal casting generated a material with comparable surface features to standard machined Ti6Al4V material. In terms of biological impact on primary human osteoblasts, no significant differences were recognized. Additional Ca- or P-ion implantation did not improve or impair these characteristics in the dosages applied. These findings indicate that spin casting of Ti6Al4V may represent an interesting alternative to the production of geometrically complex orthopedic implants.


1993 ◽  
Vol 177 (3) ◽  
pp. 741-750 ◽  
Author(s):  
Y Lunardi-Iskandar ◽  
A Gessain ◽  
V H Lam ◽  
R C Gallo

T cell colonies were generated from the peripheral blood mononuclear cells (PBMC) of 10 patients with tropical spastic paraparesis/human T lymphocyte virus type I (HTLV-I)-associated myeloencephalopathy (TSP/HAM), two healthy HTLV-I carriers, and 17 healthy HTLV-I-seronegative subjects. PBMC were cultured in methylcellulose in the absence of added growth factors (spontaneous T cell colonies), or in the presence of phorbol myristate acetate and interleukin 2 (induced T cell colonies). PBMC T cell colony-forming cells (T-CFC) from all TSP/HAM patients and HTLV-I carriers were able to grow in the absence of added growth factors and/or mitogenic stimulation. Pooled spontaneous and induced colonies were composed of cells bearing CD3+, CD4+, CD8+, and CD1+ antigens. Colonies from normal HTLV-I-seronegative subjects displayed mature cells bearing the CD3+, CD4+, CD8+, and CD1- surface phenotype. In addition, spontaneous and induced T cell colonies expressed HTLV-I antigens in 18-38% of the cells from TSP/HAM patients and HTLV-I carriers. These results demonstrate that HTLV-I infection is associated with an abnormal proliferation and differentiation of T cell progenitors in vitro and that the T-CFC from HTLV-I-seropositive individuals are infected, suggesting that T-CFC abnormalities may play a predominant role in the pathophysiology of HTLV-I.


1996 ◽  
Vol 271 (5) ◽  
pp. L688-L697 ◽  
Author(s):  
P. L. Sannes ◽  
J. Khosla ◽  
P. W. Cheng

The pulmonary alveolar basement membrane (BM) associated with alveolar type II cells has been shown to be significantly less sulfated than that of type I cells. To examine the biological significance of this observation, we measured the incorporation of 5-bromodeoxyuridine (BrdU) as an indicator of DNA synthesis in isolated rat type II cells cultured for 72-120 h on substrata that were naturally sulfated, not sulfated, or chemically desulfated in serum-free, hormonally defined media, with and without selected growth factors. The percentage of cells incorporating BrdU was significantly elevated by desulfated chondroitin sulfate in the presence of fibroblast growth factor-2 (FGF-2 or basic FGF) and depressed by heparin in the presence of either FGF-1 or acidic FGF or FGF-2. This depressive effect was lost by removing sulfate from the heparin. Some responses were dependent on the period of time in culture and concentration and molecular weight of the substrata. These observations support the notion that sulfation per se of certain components of BM is a key determinant of type II cell responses to select growth factors that may define patterns of proliferation and differentiation.


2021 ◽  
Vol 33 (2) ◽  
pp. 82-89
Author(s):  
Yasmeen Mezil ◽  
Joyce Obeid ◽  
Inna Ushcatz ◽  
Sandeep Raha ◽  
Brian W. Timmons

Purpose: In girls and women, the authors studied the effects of an acute bout of low-impact, moderate-intensity exercise serum on myoblast and osteoblast proliferation in vitro. Methods: A total of 12 pre/early pubertal girls (8–10 y old) and 12 women (20–30 y old) cycled at 60% VO2max for 1 hour followed by 1-hour recovery. Blood samples were collected at rest, mid-exercise, end of exercise, mid-recovery, and end of recovery. C2C12 myoblasts and MC3T3E1 osteoblasts were incubated with serum from each time point for 1 hour, then monitored for 24 hours (myoblasts) or 36 hours (osteoblasts) to examine proliferation. Cells were also monitored for 6 days (myoblasts) to examine myotube formation and 21 days (osteoblasts) to examine mineralization. Results: Exercise did not affect myoblast or osteoblast proliferation. Girls exhibited lower cell proliferation relative to women at end of exercise (osteoblasts, P = .041; myoblasts, P = .029) and mid-recovery (osteoblasts, P = .010). Mineralization was lower at end of recovery relative to rest (P = .014) in both girls and women. Myotube formation was not affected by exercise or group. Conclusion: The systemic environment following one acute bout of low-impact moderate-intensity exercise in girls and women does not elicit osteoblast or myoblast activity in vitro. Differences in myoblast and osteoblast proliferation between girls and women may be influenced by maturation.


2019 ◽  
Author(s):  
Xiaojing Nie ◽  
Xirao Sun ◽  
Chengyue Wang ◽  
Jingxin Yang

Abstract Type I collagen (Col I) is a main component of extracellular matrix (ECM). Its safety, biocompatibility, hydrophilicity and pyrogen immunogenicity make it suitable for tissues engineering applications. Mg2+ also control a myriad of cellular processes, including the bone development by enhancing the attachment and differentiation of osteoblasts and accelerating mineralization to enhance bone healing. In our studies, Mg2+ bind collagen to promote the proliferation and differentiation of osteoblasts through the expression of integrins and downstream signaling pathways. In order to clarify the biological behavior effect of 10 mM Mg2+/Col I coating, we performed 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase (ALP), 4′6-diamidino-2-phenylindole (DAPI), Alizarin red staining and Rhodamine B-isothiocyanate (RITC)-labeled phalloidin experiments and found that 10 mM Mg2+ group, Col I-coating group, 10 mM Mg2+/Col I-coating group, respectively, promoted the proliferation and differentiation of osteoblasts, especially 10 mM Mg2+/Col I-coating group. We detected the mRNA expression of osteogenic-related genes (Runx2, ALP and OCN, OPN and BMP-2) and the protein expression of signaling pathway (integrin α2, integrin β1, FAK and ERK1/2), these results indicated that 10 mM Mg2+/Col I coating play an critical role in up-regulating the MC3T3-E1 cells activity. The potential mechanisms of this specific performance may be through activating via integrin α2β1-FAK-ERK1/2 protein-coupled receptor pathway.


2005 ◽  
Vol 288-289 ◽  
pp. 429-432 ◽  
Author(s):  
Zhi Qing Chen ◽  
Quan Li Li ◽  
Quan Zen ◽  
Gang Li ◽  
Hao Bin Jiang ◽  
...  

Phosphorylated chitosans were synthesized as templates to manipulate hydroxyapatite (HA) crystal nucleation, growth and microstructure. Two kinds of insoluble phosphorylated chitosan were soaked in saturated Ca(OH)2 solution for 4 d and in 1.5× SBF (simulated body fluid) solutions for 14 d at 37 °C for biomimetic mineralization. A lower [P]-content of phosphorylated chitosan promoted greater mineralization than higher [P]-content. Phosphorylated chitosan inhibited osteoblast proliferation and differentiation in vitro, while calcium phosphate phosphorylated chitosan composites did not.


Sign in / Sign up

Export Citation Format

Share Document