scholarly journals Effect of magnesium ions/Type I collagen promote the biological behavior of osteoblasts and its mechanism

2019 ◽  
Author(s):  
Xiaojing Nie ◽  
Xirao Sun ◽  
Chengyue Wang ◽  
Jingxin Yang

Abstract Type I collagen (Col I) is a main component of extracellular matrix (ECM). Its safety, biocompatibility, hydrophilicity and pyrogen immunogenicity make it suitable for tissues engineering applications. Mg2+ also control a myriad of cellular processes, including the bone development by enhancing the attachment and differentiation of osteoblasts and accelerating mineralization to enhance bone healing. In our studies, Mg2+ bind collagen to promote the proliferation and differentiation of osteoblasts through the expression of integrins and downstream signaling pathways. In order to clarify the biological behavior effect of 10 mM Mg2+/Col I coating, we performed 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase (ALP), 4′6-diamidino-2-phenylindole (DAPI), Alizarin red staining and Rhodamine B-isothiocyanate (RITC)-labeled phalloidin experiments and found that 10 mM Mg2+ group, Col I-coating group, 10 mM Mg2+/Col I-coating group, respectively, promoted the proliferation and differentiation of osteoblasts, especially 10 mM Mg2+/Col I-coating group. We detected the mRNA expression of osteogenic-related genes (Runx2, ALP and OCN, OPN and BMP-2) and the protein expression of signaling pathway (integrin α2, integrin β1, FAK and ERK1/2), these results indicated that 10 mM Mg2+/Col I coating play an critical role in up-regulating the MC3T3-E1 cells activity. The potential mechanisms of this specific performance may be through activating via integrin α2β1-FAK-ERK1/2 protein-coupled receptor pathway.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masahiko Terajima ◽  
Yuki Taga ◽  
Becky K. Brisson ◽  
Amy C. Durham ◽  
Kotaro Sato ◽  
...  

AbstractIn spite of major advances over the past several decades in diagnosis and treatment, breast cancer remains a global cause of morbidity and premature death for both human and veterinary patients. Due to multiple shared clinicopathological features, dogs provide an excellent model of human breast cancer, thus, a comparative oncology approach may advance our understanding of breast cancer biology and improve patient outcomes. Despite an increasing awareness of the critical role of fibrillar collagens in breast cancer biology, tumor-permissive collagen features are still ill-defined. Here, we characterize the molecular and morphological phenotypes of type I collagen in canine mammary gland tumors. Canine mammary carcinoma samples contained longer collagen fibers as well as a greater population of wider fibers compared to non-neoplastic and adenoma samples. Furthermore, the total number of collagen cross-links enriched in the stable hydroxylysine-aldehyde derived cross-links was significantly increased in neoplastic mammary gland samples compared to non-neoplastic mammary gland tissue. The mass spectrometric analyses of type I collagen revealed that in malignant mammary tumor samples, lysine residues, in particular those in the telopeptides, were markedly over-hydroxylated in comparison to non-neoplastic mammary tissue. The extent of glycosylation of hydroxylysine residues was comparable among the groups. Consistent with these data, expression levels of genes encoding lysyl hydroxylase 2 (LH2) and its molecular chaperone FK506-binding protein 65 were both significantly increased in neoplastic samples. These alterations likely lead to an increase in the LH2-mediated stable collagen cross-links in mammary carcinoma that may promote tumor cell metastasis in these patients.


2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Shihui Jiang ◽  
Zhaoxia Yu ◽  
Lanrui Zhang ◽  
Guanhua Wang ◽  
Xiaohua Dai ◽  
...  

Abstract This study aimed at evaluate the effects of different aperture-sized type I collagen/silk fibroin (CSF) scaffolds on the proliferation and differentiation of human dental pulp cells (HDPCs). The CSF scaffolds were designed with 3D mapping software Solidworks. Three different aperture-sized scaffolds (CSF1–CSF3) were prepared by low-temperature deposition 3D printing technology. The morphology was observed by scanning electron microscope (SEM) and optical coherence tomography. The porosity, hydrophilicity and mechanical capacity of the scaffold were detected, respectively. HDPCs (third passage, 1 × 105 cells) were seeded into each scaffold and investigated by SEM, CCK-8, alkaline phosphatase (ALP) activity and HE staining. The CSF scaffolds had porous structures with macropores and micropores. The macropore size of CSF1 to CSF3 was 421 ± 27 μm, 579 ± 36 μm and 707 ± 43 μm, respectively. The porosity was 69.8 ± 2.2%, 80.1 ± 2.8% and 86.5 ± 3.3%, respectively. All these scaffolds enhanced the adhesion and proliferation of HDPCs. The ALP activity in the CSF1 group was higher than that in the CSF3 groups (P < 0.01). HE staining showed HDPCs grew in multilayer within the scaffolds. CSF scaffolds significantly improved the adhesion and ALP activity of HDPCs. CSF scaffolds were promising candidates in dentine-pulp complex regeneration.


1999 ◽  
Vol 189 (7) ◽  
pp. 1139-1148 ◽  
Author(s):  
Mickie Bhatia ◽  
Dominique Bonnet ◽  
Dongmei Wu ◽  
Barbara Murdoch ◽  
Jeff Wrana ◽  
...  

The identification of molecules that regulate human hematopoietic stem cells has focused mainly on cytokines, of which very few are known to act directly on stem cells. Recent studies in lower organisms and the mouse have suggested that bone morphogenetic proteins (BMPs) may play a critical role in the specification of hematopoietic tissue from the mesodermal germ layer. Here we report that BMPs regulate the proliferation and differentiation of highly purified primitive human hematopoietic cells from adult and neonatal sources. Populations of rare CD34+CD38−Lin− stem cells were isolated from human hematopoietic tissue and were found to express the BMP type I receptors activin-like kinase (ALK)-3 and ALK-6, and their downstream transducers SMAD-1, -4, and -5. Treatment of isolated stem cell populations with soluble BMP-2, -4, and -7 induced dose-dependent changes in proliferation, clonogenicity, cell surface phenotype, and multilineage repopulation capacity after transplantation in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Similar to transforming growth factor β, treatment of purified cells with BMP-2 or -7 at high concentrations inhibited proliferation yet maintained the primitive CD34+CD38− phenotype and repopulation capacity. In contrast, low concentrations of BMP-4 induced proliferation and differentiation of CD34+ CD38−Lin− cells, whereas at higher concentrations BMP-4 extended the length of time that repopulation capacity could be maintained in ex vivo culture, indicating a direct effect on stem cell survival. The discovery that BMPs are capable of regulating repopulating cells provides a new pathway for controlling human stem cell development and a powerful model system for studying the biological mechanism of BMP action using primary human cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Chen Qi ◽  
Xu Xiaofeng ◽  
Wang Xiaoguang

Objective. To investigate the effects of Toll-like receptors in stem cell osteogenesis.Methods. Bone marrow mesenchymal stem cells (BMSCs) were divided into the blank group, the TLR-3 activated group, and the TLR-4 activated group. After 10 days’ osteogenic-promoting culture, expression of type I collagen and osteocalcin was determined by Western blot. Osteoblasts (OBs) were also divided into three groups mentioned above. Alkaline phosphatase (ALP) and alizarin red staining were performed after 10 days’ ossification-inducing culture. The expression ofβ-catenin was investigated by Western blot.Results. Both the TLR-3 and TLR-4 activated groups had increased expression of type I collagen and osteocalcin; the effect of TLR-4 was stronger. The intensity of alizarin red and ALP staining was strongest in the TLR-3 activated group and weakest in the TLR-4 activated group. Activation of TLR-4 decreased the expression ofβ-catenin, whilst activation of TLR-3 did not affect the expression ofβ-catenin.Discussion. This study suggested that both TLR-3 and -4 promoted differentiation of BMSCs to OBs. TLR-3 had an inducing effect on the ossification of OBs to osteocytes, whilst the effect of TLR-4 was the opposite because of its inhibitory effect on the Wnt signaling pathway.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Fan Zhang ◽  
Misi Si ◽  
Huiming Wang ◽  
Mohamed K. Mekhemar ◽  
Christof E. Dörfer ◽  
...  

Cytokines play major roles in tissue destruction/repair. The present study investigates proliferative and osteogenic differentiation potentials of gingival mesenchymal stem/progenitor cells (G-MSCs), influenced by IL-1/TNF-αinflammatory/anti-inflammatory conditions. Human G-MSCs were isolated, characterized, and cultured in basic medium (control group, M1), in basic medium with IL-1β, TNF-α, and IFN-γ(inflammatory group, M2) and with IL-1ra/TNF-αi added to M2 (anti-inflammatory group, M3). MTT tests at days 1, 3, and 7 and CFU assay at day 12 were conducted. Osteogenic differentiation was analyzed by bone-specific transcription factors (RUNX2), alkaline phosphatase (ALP), type I collagen (Col-I), osteopontin (OPN), and osteonectin (ON) expression at days 1, 3, 7, and 14 and Alizarin red staining at day 14. At day 3, the control group showed the highest cell numbers. At day 7, cell numbers in inflammatory and anti-inflammatory group outnumbered the control group. At day 12, CFUs decreased in the inflammatory and anti-inflammatory groups, with altered cellular morphology. The anti-inflammatory group demonstrated elevated bone-specific transcription factors at 14 days. After 14 days of osteogenic induction, calcified nodules in the anti-inflammatory group were higher compared to control and inflammatory groups. For regeneration, initial inflammatory stimuli appear essential for G-MSCs’ proliferation. With inflammatory persistence, this positive effect perishes and is followed by a short-term stimulatory one on osteogenesis. At this stage, selective anti-inflammatory intervention could boost G-MSCs’ differentiation.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yusuke Nakagawa ◽  
Takeshi Muneta ◽  
Kunikazu Tsuji ◽  
Shizuko Ichinose ◽  
Yasuharu Hakamatsuka ◽  
...  

β-Tricalcium phosphate (β-TCP) micron particles whose diameters range from 1 μm to 10 μm have been recently developed, however, their biological effects remain unknown. We investigated the biological effects ofβ-TCP micron particles on proliferation, cytotoxicity, and calcification of human synovial mesenchymal stem cells (MSCs). MSCs were cultured without dexamethasone,β-glycerophosphate, or ascorbic acid. 1.0 mg/mLβ-TCP micron particles inhibited proliferation of MSCs significantly and increased dead cells. In the contact condition, 0.1 mg/mLβ-TCP micron particles promoted calcification of MSCs evaluated by alizarin red staining and enhanced mRNA expressions of runx2, osteopontin, and type I collagen. In the noncontact condition, these effects were not observed. 0.1 mg/mLβ-TCP micron particles increased calcium concentration in the medium in the contact condition, while 1.0 mg/mLβ-TCP micron particles decreased calcium and phosphorus concentrations in the medium in the noncontact condition. By transmission electron microscopy,β-TCP micron particles were localized in the phagosome of MSCs and were dissolved. In conclusion,β-TCP micron particles promoted calcification of MSCs and enhanced osteogenesis-related gene expressionsin vitro.


2000 ◽  
Vol 151 (4) ◽  
pp. 879-890 ◽  
Author(s):  
Michael T. Engsig ◽  
Qing-Jun Chen ◽  
Thiennu H. Vu ◽  
Anne-Cecilie Pedersen ◽  
Bente Therkidsen ◽  
...  

Bone development requires the recruitment of osteoclast precursors from surrounding mesenchyme, thereby allowing the key events of bone growth such as marrow cavity formation, capillary invasion, and matrix remodeling. We demonstrate that mice deficient in gelatinase B/matrix metalloproteinase (MMP)-9 exhibit a delay in osteoclast recruitment. Histological analysis and specialized invasion and bone resorption models show that MMP-9 is specifically required for the invasion of osteoclasts and endothelial cells into the discontinuously mineralized hypertrophic cartilage that fills the core of the diaphysis. However, MMPs other than MMP-9 are required for the passage of the cells through unmineralized type I collagen of the nascent bone collar, and play a role in resorption of mineralized matrix. MMP-9 stimulates the solubilization of unmineralized cartilage by MMP-13, a collagenase highly expressed in hypertrophic cartilage before osteoclast invasion. Hypertrophic cartilage also expresses vascular endothelial growth factor (VEGF), which binds to extracellular matrix and is made bioavailable by MMP-9 (Bergers, G., R. Brekken, G. McMahon, T.H. Vu, T. Itoh, K. Tamaki, K. Tanzawa, P. Thorpe, S. Itohara, Z. Werb, and D. Hanahan. 2000. Nat. Cell Biol. 2:737–744). We show that VEGF is a chemoattractant for osteoclasts. Moreover, invasion of osteoclasts into the hypertrophic cartilage requires VEGF because it is inhibited by blocking VEGF function. These observations identify specific actions of MMP-9 and VEGF that are critical for early bone development.


2014 ◽  
Vol 25 (5) ◽  
pp. 583-593 ◽  
Author(s):  
Ting-Hein Lee ◽  
William McKleroy ◽  
Amin Khalifeh-Soltani ◽  
Stephen Sakuma ◽  
Stanislav Lazarev ◽  
...  

Tissue fibrosis occurs when matrix production outpaces matrix degradation. Degradation of collagen, the main component of fibrotic tissue, is mediated through an extracellular proteolytic pathway and intracellular pathway of cellular uptake and lysosomal digestion. Recent studies demonstrate that disruption of the intracellular pathways can exacerbate fibrosis. These pathways are poorly characterized. Here we identify novel mediators of the intracellular pathway of collagen turnover through a genome-wide RNA interference screen in Drosophila S2 cells. Screening of 7505 Drosophila genes conserved among metazoans identified 22 genes that were required for efficient internalization of type I collagen. These included proteins involved in vesicle transport, the actin cytoskeleton, and signal transduction. We show further that the flotillin genes have a conserved and central role in collagen uptake in Drosophila and human cells. Short hairpin RNA–mediated silencing of flotillins in human monocyte and fibroblasts impaired collagen uptake by promoting lysosomal degradation of the endocytic collagen receptors uPARAP/Endo180 and mannose receptor. These data provide an initial characterization of intracellular pathways of collagen turnover and identify the flotillin genes as critical regulators of this process. A better understanding of these pathways may lead to novel therapies that reduce fibrosis by increasing collagen turnover.


2018 ◽  
Author(s):  
Mariko Kamata ◽  
Hideki Amano ◽  
Yoshiya Ito ◽  
Tomoe Fujita ◽  
Kanako Hosono ◽  
...  

AbstractLeukotriene B4 (LTB4) is a lipid mediator that acts as a potent chemoattractant for inflammatory leukocytes. Kidney fibrosis is caused by migrating inflammatory cells and kidney-resident cells. Here, we examined the role of the high-affinity LTB4 receptor BLT1 during development of kidney fibrosis in wild-type (WT) mice and BLT1 knockout (BLT1-/-) mice with unilateral ureteral obstruction (UUO). We found elevated expression of 5-lipoxygenase (5-LOX), which generates LTB4, in the renal tubules of WT and BLT1-/- UUO mice. Accumulation of immunoreactive type I collagen in UUO kidneys of WT mice increased over time; however, the increase was less prominent in BLT1-/- mice. Accumulation of S100A4-positive fibroblasts also increased temporally in WT UUO kidneys, but was again less pronounced in those of BLT1-/- mice. The same was true of mRNA encoding transforming growth factor-β (TGF)-β and fibroblast growth factor (FGF)-2. Finally, accumulation of F4/80-positive macrophages, which secrete TGF-β, also increased temporally in WT UUO and BLT1-/- kidneys, but to a lesser extent in the latter. Following LTB4 stimulation in vitro, macrophages showed increased expression of mRNA encoding TGF-β/FGF-2 and Col1a1, whereas L929 fibroblasts showed increased expression of mRNA encoding α smooth muscle actin (SMA). Bone marrow (BM) transplantation studies revealed that the area positive for type I collagen was significantly smaller in BLT1-/--BM→WT UUO kidneys than in WT-BM→WT kidneys. Thus, LTB4-BLT1 signaling plays a critical role in fibrosis in UUO kidneys by increasing accumulation of macrophages and fibroblasts. Therefore, blocking BLT1 may prevent renal fibrosis.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Christopher D. Davidson ◽  
Danica Kristen P. Jayco ◽  
William Y. Wang ◽  
Ariella Shikanov ◽  
Brendon M. Baker

Abstract Mechanical interactions between cells and their surrounding extracellular matrix (ECM) guide many fundamental cell behaviors. Native connective tissue consists of highly organized, 3D networks of ECM fibers with complex, nonlinear mechanical properties. The most abundant stromal matrix component is fibrillar type I collagen, which often possesses a wavy, crimped morphology that confers strain- and load-dependent nonlinear mechanical behavior. Here, we established a new and simple method for engineering electrospun fibrous matrices composed of dextran vinyl sulfone (DexVS) with controllable crimped structure. A hydrophilic peptide was functionalized to DexVS matrices to trigger swelling of individual hydrogel fibers, resulting in crimped microstructure due to the fixed anchorage of fibers. Mechanical characterization of these matrices under tension confirmed orthogonal control over nonlinear stress–strain responses and matrix stiffness. We next examined ECM mechanosensing of individual endothelial cells (ECs) and found that fiber crimp promoted physical matrix remodeling alongside decreases in cell spreading, focal adhesion area, and nuclear localization of Yes-associated protein (YAP). These changes corresponded to an increase in migration speed, along with evidence for long-range interactions between neighboring cells in crimped matrices. Interestingly, when ECs were seeded at high density in crimped matrices, capillary-like networks rapidly assembled and contained tube-like cellular structures wrapped around bundles of synthetic matrix fibers due to increased physical reorganization of matrix fibers. Our work provides an additional level of mechanical and architectural tunability to synthetic fibrous matrices and implicates a critical role for mechanical nonlinearity in EC mechanosensing and network formation.


Sign in / Sign up

Export Citation Format

Share Document