scholarly journals Chemocatalytic Conversion of Cellulose into Key Platform Chemicals

2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Guangbi Li ◽  
Wei Liu ◽  
Chenliang Ye ◽  
Xiaoyun Li ◽  
Chuan-Ling Si

Chemocatalytic transformation of lignocellulosic biomass to value-added chemicals has attracted global interest in order to build up sustainable societies. Cellulose, the first most abundant constituent of lignocellulosic biomass, has received extensive attention for its comprehensive utilization of resource, such as its catalytic conversion into high value-added chemicals and fuels (e.g., HMF, DMF, and isosorbide). However, the low reactivity of cellulose has prevented its use in chemical industry due to stable chemical structure and poor solubility in common solvents over the cellulose. Recently, homogeneous or heterogeneous catalysis for the conversion of cellulose has been expected to overcome this issue, because various types of pretreatment and homogeneous or heterogeneous catalysts can be designed and applied in a wide range of reaction conditions. In this review, we show the present situation and perspective of homogeneous or heterogeneous catalysis for the direct conversion of cellulose into useful platform chemicals.

2021 ◽  
Vol 55 (3-4) ◽  
pp. 207-222
Author(s):  
RAMANDEEP KAUR ◽  
PUNEET KAUR

"The potential of non-edible lignocellulosic biomass paves the path to sustainable economy. A large number of valueadded products have been synthesized by the fractionation of the major components of biomass, i.e. cellulose, hemicelluloses and lignin. Cellulose, the most abundant biopolymer on earth, serves as a starting material for the synthesis of various platform chemicals, such as sorbitol, 5- hydroxylmethylfurfural (HMF), dimethylfuran and levulinic acid. Hydrogels and aerogels fabricated from cellulose, modified cellulose or nanocellulose have proved valuable in a wide range of such as biomedical, food and technological applications. Cellulose-based polymers or bioplastics also emerged as an alternative to fossil fuel-based polymers. In this review, chemical paths to valorize plant cellulose for producing various value-added products have been discussed. The major challenge for valorization is the development of novel and green synthesis methods with simultaneous focus on an integrated approach."


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1234
Author(s):  
Zhiwei Jiang ◽  
Di Hu ◽  
Zhiyue Zhao ◽  
Zixiao Yi ◽  
Zuo Chen ◽  
...  

Efficient conversion of renewable biomass into value-added chemicals and biofuels is regarded as an alternative route to reduce our high dependence on fossil resources and the associated environmental issues. In this context, biomass-based furfural and levulinic acid (LA) platform chemicals are frequently utilized to synthesize various valuable chemicals and biofuels. In this review, the reaction mechanism and catalytic system developed for the generation of furfural and levulinic acid are summarized and compared. Special efforts are focused on the different catalytic systems for the synthesis of furfural and levulinic acid. The corresponding challenges and outlooks are also observed.


2017 ◽  
Vol 19 (8) ◽  
pp. 1969-1982 ◽  
Author(s):  
Deepak Verma ◽  
Rizki Insyani ◽  
Young-Woong Suh ◽  
Seung Min Kim ◽  
Seok Ki Kim ◽  
...  

For realizing sustainable bio-based refineries, it is crucial to obtain high yields of value-added chemicalsviadirect conversion of cellulose and lignocellulosic biomass.


2021 ◽  
Vol 3 ◽  
Author(s):  
Huan Chen ◽  
Kun Wan ◽  
Fangjuan Zheng ◽  
Zhuo Zhang ◽  
Hongyu Zhang ◽  
...  

In response to the less accessible fossil resources and deteriorating environmental problems, catalytic conversion of the abundant and renewable lignocellulosic biomass to replace fossil resources for the production of value-added chemicals and fuels is of great importance. Depolymerization of carbohydrate and its derivatives can obtain a series of C5-C6 monosaccharides (e.g., glucose and xylose) and their derived platform compounds (e.g., HMF and furfural). Selective transformation of lignocellulose using sustainable solar energy via photocatalysis has attract broad interest from a growing scientific community. The unique photogenerated reactive species (e.g., h+, e−, •OH, •O2−, and 1O2), novel reaction pathways as well as the mild reaction conditions make photocatalysis a “dream reaction.” This review is aimed to provide an overview of the up-to-date contributions achieved in the selective photocatalytic transformation of carbohydrate and its derivatives. Photocatalytic methods, properties and merits of different catalytic systems are well summarized. We then put forward future perspective and challenges in this field.


2018 ◽  
Vol 34 (5) ◽  
pp. 595-655 ◽  
Author(s):  
Mohammad Ghashghaee

Abstract The reduced availability of propylene and C4 products from steam crackers continues to provoke on-purpose technologies for light olefins such that almost 30% of propylene in 2025 is predicted to be supplied from unconventional sources. Furthermore, the recent discoveries of natural gas reservoirs have urged interest in the conversion of surplus alkanes and alkenes, especially ethane and ethylene. The direct conversion of ethylene to propylene or a combination of value-added chemicals, including butylenes and oligomers in the range of gasoline and diesel fuel, provides the capability of responding to the fluctuations in the balance between supply and demand of the main petrochemicals. A comprehensive review of heterogeneous catalysts for the gas-phase conversion pathways is presented here in terms of catalytic performances (ethylene conversion and product selectivities), productivities, lifetimes, active sites, physicochemical properties, mechanisms, influence of operating conditions, deactivation and some unresolved/less-advanced aspects of the field. The addressed catalysts cover both zeolitic materials and transition metals, such as tungsten, molybdenum, rhenium and nickel. Efforts in both experimental and theoretical studies are taken into account. Aside from the potential fields of progress, the review reveals very promising performances for the emerging technologies to produce propylene, a mixture of propylene and butenes, or a liquid fuel from ethylene.


2020 ◽  
Vol 24 (6) ◽  
pp. 583-621
Author(s):  
Arvind Singh ◽  
Gurpreet Kaur ◽  
Bubun Banerjee

Bis(indolyl)methane skeleton is the main building block of many naturally occurring bioactive compounds. Bis(indolyl)methanes are found to possess a wide range of pharmaceuitical efficacies. These important scaffolds are being used as anti-cancer, antioxidant, anti-bacterial, anti-inflammatory, and anti-proliferative agents. In this review, we summarized the latest developments on the synthesis of various bis/tris(indolyl)methane derivatives from the reactions of two equivalents of indoles and one equivalent of aldehydes or indole-3-carbaldehydes under various reaction conditions. More than hundred different catalysts were employed for these transformations which include various metal catalysts, ionic liquids, organocatalysts, surfactants, homogeneous, heterogeneous catalysts etc.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3621-3635
Author(s):  
Guizhuan Xu ◽  
Shaohao Zhang ◽  
Zhangbin Zheng ◽  
Chen Wang ◽  
Shijie Wang ◽  
...  

5-Ethoxymethylfurfural (EMF) is a new type of biofuel with a high energy density and excellent fuel properties. One-pot production of EMF from renewable carbohydrate catalyzed by heterogeneous catalysts has the potential to be an attractive reaction pathway. In this study, fructose was directly converted to EMF in ethanol medium catalyzed by ultra stable Y zeolite (USY). The effects of different reaction conditions on EMF yields were investigated, and an optimum reaction condition was obtained by utilizing response surface methodology. Under the optimum reaction conditions, which were a temperature of 132 °C, substrate density of 60 g/L, and catalyst dosage of 2.1 wt%, a maximum EMF yield of 73.8 mol% with the prediction error of 1.6% was achieved in 25 min. Moreover, the reusability of USY and characterization were evaluated. This study demonstrated a promising strategy for EMF production from fructose.


2014 ◽  
Vol 80 (24) ◽  
pp. 7631-7639 ◽  
Author(s):  
Tae Sun Kang ◽  
Darren R. Korber ◽  
Takuji Tanaka

ABSTRACTLactobacillus panisPM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact thatL. panisPM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly,L. panisPM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes ofEscherichia coli, was introduced intoL. panisPM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production.


Sign in / Sign up

Export Citation Format

Share Document