Direct conversion of cellulose to high-yield methyl lactate over Ga-doped Zn/H-nanozeolite Y catalysts in supercritical methanol

2017 ◽  
Vol 19 (8) ◽  
pp. 1969-1982 ◽  
Author(s):  
Deepak Verma ◽  
Rizki Insyani ◽  
Young-Woong Suh ◽  
Seung Min Kim ◽  
Seok Ki Kim ◽  
...  

For realizing sustainable bio-based refineries, it is crucial to obtain high yields of value-added chemicalsviadirect conversion of cellulose and lignocellulosic biomass.

2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Guangbi Li ◽  
Wei Liu ◽  
Chenliang Ye ◽  
Xiaoyun Li ◽  
Chuan-Ling Si

Chemocatalytic transformation of lignocellulosic biomass to value-added chemicals has attracted global interest in order to build up sustainable societies. Cellulose, the first most abundant constituent of lignocellulosic biomass, has received extensive attention for its comprehensive utilization of resource, such as its catalytic conversion into high value-added chemicals and fuels (e.g., HMF, DMF, and isosorbide). However, the low reactivity of cellulose has prevented its use in chemical industry due to stable chemical structure and poor solubility in common solvents over the cellulose. Recently, homogeneous or heterogeneous catalysis for the conversion of cellulose has been expected to overcome this issue, because various types of pretreatment and homogeneous or heterogeneous catalysts can be designed and applied in a wide range of reaction conditions. In this review, we show the present situation and perspective of homogeneous or heterogeneous catalysis for the direct conversion of cellulose into useful platform chemicals.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4286
Author(s):  
Eun Jin Cho ◽  
Yoon Gyo Lee ◽  
Jihye Chang ◽  
Hyeun-Jong Bae

In this research, novel biorefinery processes for obtaining value-added chemicals such as biosugar and hesperidin from mandarin peel waste (MPW) are described. Herein, three different treatment methods were comparatively evaluated to obtain high yields of biosugar and hesperidin from MPW. Each method was determined by changes in the order of three processing steps, i.e., oil removal, hesperidin extraction, and enzymatic hydrolysis. The order of the three steps was found to have a significant influence on the production yields. Biosugar and hesperidin production yields were highest with method II, where the processing steps were performed in the following order: oil removal, enzymatic hydrolysis, and hesperidin extraction. The maximum yields obtained with method II were 34.46 g of biosugar and 6.48 g of hesperidin per initial 100 g of dry MPW. Therefore, the methods shown herein are useful for the production of hesperidin and biosugar from MPW. Furthermore, the utilization of MPWs as sources of valuable materials may be of considerable economic benefits and has become increasingly attractive.


2020 ◽  
Vol 21 (1) ◽  
pp. 6-9
Author(s):  
Wuye Ria Andayanie

Soybean superior varieties with high yields and are resistant to abiotic stress have been largely released, although some varieties grown in the field are not resistant to SMV. In addition, the opportunity to obtain lines of hope as prospective varieties with high yield and resistance to SMV is very small. The method for evaluating soybean germplasm is based on serological observations of 98 accessions of leaf samples from SMV inoculation with T isolate. The evaluation results of 98 accessions based on visual observations showed 31 genotypes reacting very resistant or healthy to mild resistant category to SMV T isolate  with a percentage of symptom severity of 0 −30 %. Among 31 genotypes there are 2 genotypes (PI 200485; M8Grb 44; Mlg 3288) with the category of visually very resistant and resistant, respectively and  Mlg 3288  with the category of mild resistant.  They have a good agronomic appearance with a weight of 100 seeds (˃10 g) and react negatively with polyclonal antibodies to SMV, except Mlg 3288 reaction is not consistent, despite the weight of 100 seeds (˃ 10 g). Leaf samples from 98 accessions revealed various symptoms of SMV infection in the field. This diversity of symptoms is caused by susceptibility to accession, when infection occurs, and environmental factors. Keywords—: soybean; genotipe; Soybean mosaic virus (SMV); disease severity; polyclonal  antibody


2020 ◽  
Vol 16 ◽  
Author(s):  
Mahdieh Sharifi ◽  
Ramyakrishna Pothu ◽  
Rajender Boddula ◽  
Inamuddin

Background: There is a developing demand for innovation in petroleum systems replacements. Towards this aim, lignocellulosic biomass suggested as a possible sustainable source for the manufacturing of fuels and produced chemicals. The aims of this paper are to investigate different kinds of β-O-4 lignin model compounds for the production of value-added chemicals in presence of ionic liquids. Especially, a cheap β-O-4 lignin model Guaiacol glycerol ether (GGE) (Guaifenesin) is introduced to produce valuable chemicals and novel products. Methods: Research related to chemical depolymerization of lignocellulosic biomass activity is reviewed, the notes from different methods such as thermal and microwave collected during at least 10 years. So, this collection provides a good source for academic research and it gives an efficient strategy for the manufacturing of novel value-added chemicals at an industrial scale. Results: This research presented that ionic liquid microwave-assisted is a power saving, cost efficient, fast reaction, and clean way with high selectively and purity for production of high value chemicals rather that conversional heating. Guaiacol and catechol are some of these valuable chemicals that is produced from β-O-4 lignin model compounds with high word demands that are capable to produce in industry scale. Conclusion: The β-O-4 lignin model compounds such as Guaiacol glycerol ether (GGE) (Guaifenesin) are good platform for developing food materials, perfumery, biorefinery, and pharmaceutical industry by ionic liquids-assisted lignin depolymerization method.


2021 ◽  
Vol 291 ◽  
pp. 120120
Author(s):  
Rizki Insyani ◽  
Amsalia Florence Barus ◽  
Ricky Gunawan ◽  
Jaeyong Park ◽  
Gladys Tiffany Jaya ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1234
Author(s):  
Zhiwei Jiang ◽  
Di Hu ◽  
Zhiyue Zhao ◽  
Zixiao Yi ◽  
Zuo Chen ◽  
...  

Efficient conversion of renewable biomass into value-added chemicals and biofuels is regarded as an alternative route to reduce our high dependence on fossil resources and the associated environmental issues. In this context, biomass-based furfural and levulinic acid (LA) platform chemicals are frequently utilized to synthesize various valuable chemicals and biofuels. In this review, the reaction mechanism and catalytic system developed for the generation of furfural and levulinic acid are summarized and compared. Special efforts are focused on the different catalytic systems for the synthesis of furfural and levulinic acid. The corresponding challenges and outlooks are also observed.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1407
Author(s):  
Courtney A. Weber

Annual plasticulture production of strawberries promises superior weed control, fruit quality and yields. However, strawberry varieties adapted for perennial, matted-row production and local markets in cold climate regions have not been widely tested for adaptation to an annual production cycle. Productivity of seven short-day varieties developed for matted-row and/or annual production was examined in an annual plasticulture system in two consecutive trials in central NY (lat. 42.87° N, long. 76.99° W) harvested in 2013 and 2014. ‘Flavorfest’ demonstrated good performance in Trial 1 with high yield (390 g/plant) and large fruit size (13.9 g mean berry weight). ‘Jewel’ was shown to be well adapted to the annual plasticulture system with consistently high yields (330 and 390 g/plant) that equaled or surpassed other varieties and had moderate fruit size. ‘Chandler’ performed similarly to previous trials conducted in warmer regions with yield (340 g/plant) and fruit size (9.8 g mean berry weight) similar to ‘Jewel’. ‘Clancy’ yielded less but was consistent from year to year. The late season varieties Seneca and Ovation showed marked variability between years, possibly due to drastically different temperatures during flowering and fruit development in Trial 1 compared to Trial 2. High temperatures in Trial 1 likely caused higher early fruit yield, a compressed season and a precipitous decline in fruit size in the later season, thus reducing yield in the late season. Survival after a second dormant period was poor resulting in a small second harvest and reduced fruit size. Overall, the system demonstrated many of the expected benefits but may be more sensitive to weather conditions in the region. While many varieties developed for matted-row production may work well in an annual plasticulture system, not all varieties are equally adapted. Performance of each variety should be determined independently before large scale adoption by growers.


GCB Bioenergy ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 670-679 ◽  
Author(s):  
Sang Do Yook ◽  
Jiwon Kim ◽  
Gyeongtack Gong ◽  
Ja Kyong Ko ◽  
Youngsoon Um ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Helge Thisgaard ◽  
Joel Kumlin ◽  
Niels Langkjær ◽  
Jansen Chua ◽  
Brian Hook ◽  
...  

Abstract Background With increasing clinical demand for gallium-68, commercial germanium-68/gallium-68 ([68Ge]Ge/[68Ga]Ga) generators are incapable of supplying sufficient amounts of the short-lived daughter isotope. In this study, we demonstrate a high-yield, automated method for producing multi-Curie levels of [68Ga]GaCl3 from solid zinc-68 targets and subsequent labelling to produce clinical-grade [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTATATE. Results Enriched zinc-68 targets were irradiated at up to 80 µA with 13 MeV protons for 120 min; repeatedly producing up to 194 GBq (5.24 Ci) of purified gallium-68 in the form of [68Ga]GaCl3 at the end of purification (EOP) from an expected > 370 GBq (> 10 Ci) at end of bombardment. A fully automated dissolution/separation process was completed in 35 min. Isolated product was analysed according to the Ph. Eur. monograph for accelerator produced [68Ga]GaCl3 and found to comply with all specifications. In every instance, the radiochemical purity exceeded 99.9% and importantly, the radionuclidic purity was sufficient to allow for a shelf-life of up to 7 h based on this metric alone. Fully automated production of up to 72.2 GBq [68Ga]Ga-PSMA-11 was performed, providing a product with high radiochemical purity (> 98.2%) and very high apparent molar activities of up to 722 MBq/nmol. Further, manual radiolabelling of up to 3.2 GBq DOTATATE was performed in high yields (> 95%) and with apparent molar activities (9–25 MBq/nmol) sufficient for clinical use. Conclusions We have developed a high-yielding, automated method for the production of very high amounts of [68Ga]GaCl3, sufficient to supply proximal radiopharmacies. The reported method led to record-high purified gallium-68 activities (194 GBq at end of purification) and subsequent labelling of PSMA-11 and DOTATATE. The process was highly automated from irradiation through to formulation of the product, and as such comprised a high level of radiation protection. The quality control results obtained for both [68Ga]GaCl3 for radiolabelling and [68Ga]Ga-PSMA-11 are promising for clinical use.


Sign in / Sign up

Export Citation Format

Share Document