scholarly journals Numerical Analysis of Laterally Loaded Piles Affected by Bedrock Depth

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Younggyun Choi ◽  
Janghwan Kim ◽  
Heejung Youn

This study investigates the lateral behavior of pile foundations socketed into bedrocks using 3D finite difference analysis. The lateral load-displacement curve, pile deflection, and bending moment distribution were obtained for different bedrock depths between 3 and 20 m. It was discovered that bedrocks that have a depth of 7 m (7D) or less influence the lateral behavior of the pile. The p-y curves were collected at depths of 2.0–4.5 m, and the effect of the bedrock on the curves was evaluated. It was observed that the p-y curves were significantly affected by the material properties of the bedrock if the rock is located in close proximity (within 3D), but the effect is diminished if the p-y curves were 3.5 m (3.5D) or farther from the bedrock.

2019 ◽  
Vol 56 (11) ◽  
pp. 1545-1556 ◽  
Author(s):  
L.M. Lalicata ◽  
A. Desideri ◽  
F. Casini ◽  
L. Thorel

An experimental study was carried out to investigate the effects of soil partial saturation on the behaviour of laterally loaded piles. The proposed study was conducted by means of centrifuge tests at 100g, where a single vertical pile was subjected to a combination of static horizontal load and bending moment. The study was conducted on a silty soil characterized with laboratory testing under saturated and unsaturated conditions. During flight, two different positions of water table were explored. The influence of density was investigated by compacting the sample with two different void ratios. Finally, the effects of a variation of saturation degree on the pile response under loading were studied by raising the water table to the ground surface. Data interpretation allows drawing different considerations on the effects of partial saturation on the behaviour of laterally loaded piles. As expected, compared to saturated soils, partial saturation always leads to a stiffer and resistant response of the system. However, the depth of the maximum bending moment is related to the position of the water table and the bounding effects induced by partial saturation appear to be more important for loose soils.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhijun Yang ◽  
Qing Fang ◽  
Bu Lv ◽  
Can Mei ◽  
Xudong Fu

The cracks are likely to initiate on a lateral loaded pile and would cause greater deflection at the pile head. However, there is a lack of thorough investigation into the effect of cracking on the response of the lateral loaded pile. In this article, a full-scale field test was carried out to investigate the behavior of Drilled and Postgrouted Concrete Pipe Pile under lateral loads. A novel analysis method for the lateral loaded pile, which can take the cracking effects into consideration, was proposed, and the validity was verified by the test results. With the proposed method, the cracking effects on flexural rigidity, displacement, rotation, and bending moment of the pile were studied. In brief, cracking effect would dramatically reduce the flexural rigidity of the pile, remarkable increase the displacement and rotation of the pile top, and slightly decrease bending moment of the pile. Unambiguously, the results show that the proposed method can excellently predict the response of laterally loaded piles under cracking effects.


1998 ◽  
Vol 35 (3) ◽  
pp. 433-441 ◽  
Author(s):  
S Mezazigh ◽  
D Levacher

An extensive program of centrifuge tests was undertaken to study the effect of slopes on P-Y curves in dry sand. The paper concerns the method developed in a previous series of centrifuge tests to experimentally determine P-Y curves. Bending-moment curves are fitted by local quintic spline functions through a crossed validation method and then differentiated twice. These experimental P-Y curves are validated by back analysis. The program of tests on piles near slopes is given. It includes studies of the effect of distance to the slope, slope angle, and soil properties. Sample preparation method, model piles, and the lateral-loading device are described. Deflection versus load curves, bending-moment curves, and derived P-Y curves for piles close to slopes are compared to horizontal-ground response. The coefficients that can apply to the P-Y reaction curves of the reference piles (a single pile in horizontal ground) are proposed for use in practice.Key words: pile, slope effets, models, centrifuge, bending moment, P-Y reaction curves.


2013 ◽  
Vol 1 (1) ◽  
pp. 53-67 ◽  
Author(s):  
Dipanjan Basu ◽  
Rodrigo Salgado ◽  
Mônica Prezzi

A new analysis framework is presented for calculation of the response of laterally loaded piles in multi-layered, heterogeneous elastic soil. The governing differential equations for the pile deflections in different soil layers are obtained using the principle of minimum potential energy after assuming a rational soil displacement field. Solutions for the pile deflection are obtained analytically, while those for the soil displacements are obtained using the finite difference method. The input parameters needed for the analysis are the pile geometry, soil profile and the elastic constants of the soil and pile. The method produces results with accuracy comparable to that of a three-dimensional finite element analysis but requires much less computation time. The analysis can take into account the spatial variation of soil properties along vertical, radial and tangential directions.


2015 ◽  
Vol 52 (7) ◽  
pp. 903-925 ◽  
Author(s):  
Wei Dong Guo

This paper proposes a new, integrated two-layer model to capture nonlinear response of rotationally restrained laterally loaded rigid piles subjected to soil movement (sliding soil, or lateral spreading). First, typical pile response from model tests (using an inverse triangular loading profile) is presented, which includes profiles of ultimate on-pile force per unit length at typical sliding depths, and the evolution of pile deflection, rotation, and bending moment with soil movement. Second, a new model and closed-form expressions are developed for rotationally restrained passive piles in two-layer soil, subjected to various movement profiles. Third, the solutions are used to examine the impact of the rotational restraint on nonlinear response of bending moment, shear force, on-pile force per unit length, and pile deflection. Finally, they are compared with measured response of model piles in sliding soil, or subjected to lateral spreading, and that of an in situ test pile in moving soil. The study indicates the following: (i) nonlinear response of rigid passive piles is owing to elastic pile–soil interaction with a progressive increase in sliding depth, whether in sliding soil or subjected to lateral spreading; (ii) theoretical solutions for a uniform movement can be used to model other soil movement profiles upon using a modification factor in the movement and its depth; and (iii) a triangular and a uniform pressure profile on piles are theoretically deduced along lightly head-restrained, floating-base piles, and restrained-base piles, respectively, once subjected to lateral spreading. Nonlinear response of an in situ test pile in sliding soil and a model pile subjected to lateral spreading is elaborated to highlight the use and the advantages of the proposed solutions, along with the ranges of four design parameters deduced from 10 test piles.


1992 ◽  
Vol 29 (2) ◽  
pp. 208-216 ◽  
Author(s):  
M. Georgiadis ◽  
C. Anagnostopoulos ◽  
S. Saflekou

Results of an investigation of the response of piles in sand, under lateral loads, are presented. Model piles of three different diameters and flexural stiffnesses were tested in a centrifuge apparatus to determine prototype pile behavior. The experimental results, consisting of pile head displacements and bending moment distributions along the pile length, were interpreted, analyzed, and compared with the results of several numerical analyses. The piles were treated as elastic beams on nonlinear springs, examining several different types of soil reaction relationship (p-y curves). A new p-y relationship was developed for piles in cohesionless soil which provided very satisfactory results. Key words : pile, sand, lateral loading, centrifuge, numerical analysis.


Sign in / Sign up

Export Citation Format

Share Document