scholarly journals Nonlinear response of laterally loaded rigid piles in sliding soil

2015 ◽  
Vol 52 (7) ◽  
pp. 903-925 ◽  
Author(s):  
Wei Dong Guo

This paper proposes a new, integrated two-layer model to capture nonlinear response of rotationally restrained laterally loaded rigid piles subjected to soil movement (sliding soil, or lateral spreading). First, typical pile response from model tests (using an inverse triangular loading profile) is presented, which includes profiles of ultimate on-pile force per unit length at typical sliding depths, and the evolution of pile deflection, rotation, and bending moment with soil movement. Second, a new model and closed-form expressions are developed for rotationally restrained passive piles in two-layer soil, subjected to various movement profiles. Third, the solutions are used to examine the impact of the rotational restraint on nonlinear response of bending moment, shear force, on-pile force per unit length, and pile deflection. Finally, they are compared with measured response of model piles in sliding soil, or subjected to lateral spreading, and that of an in situ test pile in moving soil. The study indicates the following: (i) nonlinear response of rigid passive piles is owing to elastic pile–soil interaction with a progressive increase in sliding depth, whether in sliding soil or subjected to lateral spreading; (ii) theoretical solutions for a uniform movement can be used to model other soil movement profiles upon using a modification factor in the movement and its depth; and (iii) a triangular and a uniform pressure profile on piles are theoretically deduced along lightly head-restrained, floating-base piles, and restrained-base piles, respectively, once subjected to lateral spreading. Nonlinear response of an in situ test pile in sliding soil and a model pile subjected to lateral spreading is elaborated to highlight the use and the advantages of the proposed solutions, along with the ranges of four design parameters deduced from 10 test piles.

2010 ◽  
Vol 47 (2) ◽  
pp. 180-196 ◽  
Author(s):  
Wei Dong Guo ◽  
H. Y. Qin

An experimental apparatus was developed to investigate the behaviour of vertically loaded free-head piles in sand undergoing lateral soil movement (wf). A large number of tests have been conducted to date. Presented here are 14 typical model pile tests concerning two diameters, two vertical pile loading levels, and varying sliding depths with the movement wf driven by a triangular loading block. Results are provided for driving force as well as for induced shear force (T), bending moment (M), and deflection ( y) along the piles with wf / normalized sliding depth. The tests enable simple expressions to be proposed, drawn from the theory for a laterally loaded pile. The new expressions well capture the evolution of M, T, and y with soil movement observed in current model tests, and the three to five times difference in maximum bending moment (Mmax) from the two modes of loading. They further offer a good estimate of Mmax for eight in situ pile tests and one centrifuge test pile. The study quantifies the sliding resistance offered by a pile for the given wf profiles, pile location (relative to the boundary), and vertical load. It establishes the linear correlation between the maximum thrust (resistance T) and Mmax, regardless of the magnitudes of wf.


2020 ◽  
Vol 57 (11) ◽  
pp. 1780-1795 ◽  
Author(s):  
Wei Dong Guo

Piles are largely back-rotated in sliding slope or subjected to lateral spreading. This paper reveals for the first time that response of these piles (e.g., displacement, rotation, bending moment, and shear force) is amplified against forward rotating piles. In particular, magnification is detrimental, once normalized rotational stiffness (NRS) of the piles is around a singularity value (i.e., normalized singularity stiffness, NSS). New expressions are developed to gain the NSS value, the magnification degree, and the sliding depth to incur the singularity. The NRS is assessed using 1g model tests. The solutions are adopted to capture the response of the model piles, to detect new failure mechanism of Showa Bridge, and to check the safety of Christchurch bridges. The main conclusions are as follows: (i) piles are prone to response amplification, when subjected to lateral spreading or in sliding slopes. (ii) The NRS is only slightly affected by soil movement profiles and sliding depths. (iii) Showa Bridge collapsed from displacement amplification of back-rotated piles. Finally, (iv) the roller connections between girder and piers, and an integral abutment and piers are proved to be effective to curb the amplification. The amplified response needs to be assessed in practice to lessen failure of back-rotated piles.


2011 ◽  
Vol 2 (2) ◽  
pp. 71-90
Author(s):  
K. Muthukkumaran ◽  
I.P. Subha

One of the most common causes of ground failure during earthquakes is the liquefaction phenomenon, which produces severe damage to property. Although methods are available for seismic analysis of pile foundations, most of them consider soil to be an elastic material. Collapse of piled foundations in liquefiable areas has been observed in most recent strong earthquakes despite the fact that a large margin of safety is employed in their design. Lateral spreading of gently-sloping deposits of liquefiable sand is a cause of much damage in earthquakes, reportedly more than any other form of liquefaction-induced ground failure. The present investigation finds the effect of earthquake induced lateral soil movement on lateral pile capacity. Parametric study is carried out on the same model by changing the ground surface to different slopes on the top of the non liquefiable layer and by changing the length of the pile in the bottom layer of the non liquefiable layer. The paper focuses on the behaviour of pile under lateral soil movement due to earthquake. The bending moment and displacement behaviour of pile is studied in detail for different slope conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Younggyun Choi ◽  
Janghwan Kim ◽  
Heejung Youn

This study investigates the lateral behavior of pile foundations socketed into bedrocks using 3D finite difference analysis. The lateral load-displacement curve, pile deflection, and bending moment distribution were obtained for different bedrock depths between 3 and 20 m. It was discovered that bedrocks that have a depth of 7 m (7D) or less influence the lateral behavior of the pile. The p-y curves were collected at depths of 2.0–4.5 m, and the effect of the bedrock on the curves was evaluated. It was observed that the p-y curves were significantly affected by the material properties of the bedrock if the rock is located in close proximity (within 3D), but the effect is diminished if the p-y curves were 3.5 m (3.5D) or farther from the bedrock.


2019 ◽  
Vol 56 (11) ◽  
pp. 1545-1556 ◽  
Author(s):  
L.M. Lalicata ◽  
A. Desideri ◽  
F. Casini ◽  
L. Thorel

An experimental study was carried out to investigate the effects of soil partial saturation on the behaviour of laterally loaded piles. The proposed study was conducted by means of centrifuge tests at 100g, where a single vertical pile was subjected to a combination of static horizontal load and bending moment. The study was conducted on a silty soil characterized with laboratory testing under saturated and unsaturated conditions. During flight, two different positions of water table were explored. The influence of density was investigated by compacting the sample with two different void ratios. Finally, the effects of a variation of saturation degree on the pile response under loading were studied by raising the water table to the ground surface. Data interpretation allows drawing different considerations on the effects of partial saturation on the behaviour of laterally loaded piles. As expected, compared to saturated soils, partial saturation always leads to a stiffer and resistant response of the system. However, the depth of the maximum bending moment is related to the position of the water table and the bounding effects induced by partial saturation appear to be more important for loose soils.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 186 ◽  
Author(s):  
Yushi Zhang ◽  
Yubin Wang ◽  
Delian Ye ◽  
Wei Wang ◽  
Xinming Qiu ◽  
...  

Stalk strength is critical for reducing maize stalk lodging and maintaining grain yield. Ethephon has been widely applied to molding compact plant-type to reduce the lodging risk in maize production. However, there is little information on how ethephon regulates internode mechanical properties to improve maize stalk strength. Multiyear field experiments (2013–2017) were conducted to determine the effects of foliar-applied ethephon on summer maize internode morphological, chemical and mechanical characteristics. The hypothetical structural equation model was used to analyze the contribution of ethephon-induced changes of internode morphological and chemical traits to stalk mechanical strength. Ethephon significantly reduced the basal internode length, while increasing internode diameters and breaking resistance. Meanwhile, ethephon significantly increased the ratio of structural dry matter to total dry matter and the amount of structural dry matter per unit length and volume. Mechanical assays suggested that ethephon significantly altered geometric properties and increased the maximum bending moment, maximum failure force, while depressing the material properties. Furthermore, correlation and path analyses revealed strong correlations and significant contribution of internode morphological properties to stalk mechanical strength, respectively. These results support the conclusion that ethephon-induced morphology alteration played a major role in improving maize internode strength.


2021 ◽  
Vol 7 (4) ◽  
pp. 730-746
Author(s):  
Amanpreet Kaur ◽  
Harvinder Singh ◽  
J. N. Jha

This paper presents the results of three dimensional finite element analysis of laterally loaded pile groups of configuration 1×1, 2×1 and 3×1, embedded in two-layered soil consisting of soft clay at liquid limit overlying dense sand using Plaxis 3D. Effects of variation in pile length (L) and clay layer thickness (h) on lateral capacity and bending moment profile of pile foundations were evaluated by employing different values of pile length to diameter ratio (L/D) and ratio of clay layer thickness to pile length (h/L) in the analysis. Obtained results indicated that the lateral capacity reduces non-linearly with increase in clay layer thickness. Larger decrease was observed in group piles. A non-dimensional parameter Fx ratio was defined to compare lateral capacity in layered soil to that in dense sand, for which a generalized expression was derived in terms of h/L ratio and number of piles in a group. Group effect on lateral resistance and maximum bending moment was observed to become insignificant for clay layer thickness exceeding 40% of pile length. For a fixed value of clay layer thickness, lateral capacity and bending moment in a single pile increased significantly with increase in pile length only up to an optimum embedment depth in sand layer which was found to be equal to three times pile diameter and 0.21 times pile length for pile with L/D 15. Scale effect on lateral capacity has also been studied and discussed. Doi: 10.28991/cej-2021-03091686 Full Text: PDF


2019 ◽  
Vol 56 (4) ◽  
pp. 514-525 ◽  
Author(s):  
James R. Bartz ◽  
C. Derek Martin ◽  
Michael T. Hendry

A design procedure was developed for a relatively unknown slope stabilization technique consisting of a series of parallel sheet piles installed parallel to the direction of slope movement. This technique was introduced in Alberta by R.M. Hardy in the 1970s and is locally referred to as “Hardy Ribs.” A case study is discussed where Canadian National (CN) Rail installed Hardy Ribs to stabilize a landslide affecting its rail line in western Manitoba. A proposed design procedure is discussed that consists of a de-coupled approach with a separate limit equilibrium slope stability analysis and laterally loaded pile analysis using p–y curves, where p is the soil reaction per unit length and y is the lateral deflection of the pile, to model the soil–pile interaction. Example calculations are provided for the proposed design procedure for the CN case study site to illustrate its use and to estimate the stabilizing effect from the Hardy Ribs at this site.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhijun Yang ◽  
Qing Fang ◽  
Bu Lv ◽  
Can Mei ◽  
Xudong Fu

The cracks are likely to initiate on a lateral loaded pile and would cause greater deflection at the pile head. However, there is a lack of thorough investigation into the effect of cracking on the response of the lateral loaded pile. In this article, a full-scale field test was carried out to investigate the behavior of Drilled and Postgrouted Concrete Pipe Pile under lateral loads. A novel analysis method for the lateral loaded pile, which can take the cracking effects into consideration, was proposed, and the validity was verified by the test results. With the proposed method, the cracking effects on flexural rigidity, displacement, rotation, and bending moment of the pile were studied. In brief, cracking effect would dramatically reduce the flexural rigidity of the pile, remarkable increase the displacement and rotation of the pile top, and slightly decrease bending moment of the pile. Unambiguously, the results show that the proposed method can excellently predict the response of laterally loaded piles under cracking effects.


Sign in / Sign up

Export Citation Format

Share Document