scholarly journals Phenolic Rich Fractions from Mycelium and Fruiting Body of Ganoderma lucidum Inhibit Bacterial Pathogens Mediated by Generation of Reactive Oxygen Species and Protein Leakage and Modulate Hypoxic Stress in HEK 293 Cell Line

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jigni Mishra ◽  
Anivesh Joshi ◽  
Rakhee Rajput ◽  
Kaushlesh Singh ◽  
Anju Bansal ◽  
...  

Ganoderma lucidum (G. lucidum) fungus (Family Ganodermataceae) is widely used as a traditional medicine in China, Japan, and many Asian countries on account of its numerous medicinal properties such as antioxidant, anticancer, antimicrobial, energy enhancing, and immunostimulatory. This broad spectrum of therapeutic effects exhibited by G. lucidum is ascribed to its abundance in several classes of chemical constituents, namely, carbohydrates, flavonoids, minerals, phenolics, proteins, and steroids which possess substantial bioactivities. The aim of the current study was to prepare phenolic rich fractions (PRFs) from aqueous extract of the Indian variety of G. lucidum mycelium and fruiting body. These fractions were assessed for their antioxidant capacity by TPC (total phenolic content), TFC (total flavonoid content), FRAP (ferric reducing antioxidant power), and ABTS [2,2-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid] assays. Quantification of flavonoids and nucleobases present in the fractions was carried out by high-performance thin layer chromatography (HPTLC). The antibacterial activity of the fractions was evaluated against Escherichia coli, Salmonella typhi, and Staphylococcus aureus. The antibacterial mechanism of action of the PRFs was established to be generation of reactive oxygen species and leakage of proteins within bacterial cells. Additionally, the protective effect of the PRFs in counteracting hypoxia was observed in HEK 293 cell lines.

Author(s):  
Kanya Thongra-ar ◽  
Piyanuch Rojsanga ◽  
Savita Chewchinda ◽  
Supachoke Mangmool ◽  
Pongtip Sithisarn

The objects of this study were to determine the effects to reactive oxygen species and antioxidant enzymes levels in HEK-293 cells and inhibition of α-glucosidases and α-amylase enzymes of extracts from Persicaria odorata or phak phaeo. The ethanol extracts from the leaves and the stems of phak phaeo were investigated for their 2,2-diphenyl-1-picryhydrazyl (DPPH) scavenging activities (IC50 were 7.74 ± 0.47 and 7.91 ± 0.43 µg/mL, respectively). Cellular antioxidant effects in human embryonic kidney-293 (HEK-293) cells with these extracts (0.1 mg/mL) also increased the mRNA expressions of manganese superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx-1), catalase and glutathione reductase (GRe). The leaf extract showed the higher efficacies in the induction of the mRNA expressions of Mn-SOD, GPx-1 and GRe while the stem extract exhibited a stronger effect to the induction of catalase. Phak phaeo in vitro inhibitory effects to α-glucosidase enzyme (IC50 values of 9.82 ± 1.64 and 13.99 ± 1.45 µg/mL, respectively and also strong inhibition to α-amylase with IC50 values of 90.66 ± 8.75 and 19.96 ± 5.37 µg/mL, respectively). Lineweaver-Burk plot demonstrated that phak phaeo extracts inhibited α-glucosidase and α- amylase in non-competitive manners. Total phenolic and total flavonoid contents were determined by Folin-Ciocalteu and aluminium chloride methods (the leaf and stem extracts were 22.89 ± 9.16 and 22.27 ± 8.77 g gallic acid equivalent in 100 g extract (g% GAE) and 7.20 ± 3.61 and 4.06 ± 1.73 g quercetin equivalent in 100 g extract (g% QE), respectively). Keywords: Antioxidant enzymes, DPPH, HEK-293, MTT assay, Persicaria odorata, Reactive oxygen species, Total phenolic, Total flavonoid, α-glucosidases, α-amylase


2019 ◽  
Vol 366 (23) ◽  
Author(s):  
Jing Zhu ◽  
Fengli Wu ◽  
Sining Yue ◽  
Chen Chen ◽  
Shuqi Song ◽  
...  

ABSTRACT Ganoderma lucidum is a medicinal fungus that is widely used in traditional medicine. Fungal PacC is recognized as an important transcription factor that functions during adaptation to environmental pH, fungal development and secondary metabolism. Previous studies have revealed that GlPacC plays important roles in mycelial growth, fruiting body development and ganoderic acid (GA) biosynthesis. In this study, using a terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, we found that the apoptosis level was increased when PacC was silenced. The transcript and activity levels of caspase-like proteins were significantly increased in the PacC-silenced (PacCi) strains compared with the control strains. Silencing PacC also resulted in an increased reactive oxygen species (ROS) levels (∼2-fold) and decreased activity levels of enzymes involved in the antioxidant system. Further, we found that the intracellular ROS levels contributed to apoptosis and GA biosynthesis. Adding N-acetyl-cysteine and vitamin C decreased intracellular ROS and resulted in the inhibition of apoptosis in the PacCi strains. Additionally, the GA biosynthesis was different between the control strains and the PacCi strains after intracellular ROS was eliminated. Taken together, the findings showed that silencing PacC can result in an intracellular ROS burst, which increases cell apoptosis and GA biosynthesis levels. Our study provides novel insight into the functions of PacC in filamentous fungi.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4418
Author(s):  
Hyun-Chul Kim ◽  
Eunjoo Kim ◽  
Se Guen Lee ◽  
Sung Jun Lee ◽  
Sang Won Jeong ◽  
...  

Reactive oxygen species (ROS)-responsive nanocarriers have received considerable research attention as putative cancer treatments because their tumor cell targets have high ROS levels. Here, we synthesized a miktoarm amphiphile of dithioketal-linked ditocopheryl polyethylene glycol (DTTP) by introducing ROS-cleavable thioketal groups as linkers between the hydrophilic and hydrophobic moieties. We used the product as a carrier for the controlled release of doxorubicin (DOX). DTTP has a critical micelle concentration (CMC) as low as 1.55 μg/mL (4.18 × 10−4 mM), encapsulation efficiency as high as 43.6 ± 0.23% and 14.6 nm particle size. The DTTP micelles were very responsive to ROS and released their DOX loads in a controlled manner. The tocopheryl derivates linked to DTTP generated ROS and added to the intracellular ROS in MCF-7 cancer cells but not in HEK-293 normal cells. In vitro cytotoxicity assays demonstrated that DOX-encapsulated DTTP micelles displayed strong antitumor activity but only slightly increased apoptosis in normal cells. This ROS-triggered, self-accelerating drug release device has high therapeutic efficacy and could be a practical new strategy for the clinical application of ROS-responsive drug delivery systems.


Author(s):  
Sowjanya Pulipati ◽  
P. Srinivasa Babu ◽  
U. Naveena ◽  
S.K. Rafeeka Parveen ◽  
S.K. Sumaya Nausheen ◽  
...  

Free radicals or reactive oxygen species are involved in various pharmacological conditions. As synthetic antioxidants possess numerous adverse health effects, the medicinal plants possessing antioxidant components can be used to prevent harmful effects of reactive oxygen species. In the present study leaves of Amaranthus tricolor Linn were used to prepare chloroform (CEAT), methanolic (MEAT) and aqueous (AEAT) extracts, analyze the presence of phytochemicals and evaluation of in-vitro antioxidant property. Quantitative determination of phenols, tannins and flavonoids in leaves A.tricolor was carried out using spectrophotometric methods. The antioxidant activity was performed by DPPH, p-NDA radical scavenging methods for different extracts of the plant. The plant species showed that methanolic extract (MEAT) on higher concentration possess better antioxidant potential when compared with reference standard ascorbic acid. The plant extracts exhibited strong antioxidant DPPH radical scavenging activity with the IC50 values 290, 657, 830 and 130μg/ml of MEAT, CEAT, AEAT and ASA respectively. In scavenging hydroxyl radical by p-NDA method the MEAT showed maximum activity, CEAT showed moderate and AEAT showed minimum activity. The strongest antioxidant activity of MEAT could be due to the presence of flavonoids and phenols.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Juan Carlos Corona ◽  
Sonia Carreón-Trujillo ◽  
Raquel González-Pérez ◽  
Denise Gómez-Bautista ◽  
Daniela Vázquez-González ◽  
...  

Abstract Atomoxetine (ATX) is a non-stimulant drug used in the treatment of attention-deficit/hyperactivity disorder (ADHD) and is a selective norepinephrine reuptake inhibitor. It has been shown that ATX has additional effects beyond the inhibition of norepinephrine reuptake, affecting several signal transduction pathways and alters gene expression. Here, we study alterations in oxidative stress and mitochondrial function in human differentiated SH-SY5Y cells exposed over a range of concentrations of ATX. We found that the highest concentrations of ATX in neuron-like cells, caused cell death and an increase in cytosolic and mitochondrial reactive oxygen species, and alterations in mitochondrial mass, membrane potential and autophagy. Interestingly, the dose of 10 μM ATX increased mitochondrial mass and decreased autophagy, despite the induction of cytosolic and mitochondrial reactive oxygen species. Thus, ATX has a dual effect depending on the dose used, indicating that ATX produces additional active therapeutic effects on oxidative stress and on mitochondrial function beyond the inhibition of norepinephrine reuptake.


2013 ◽  
Vol 394 (12) ◽  
pp. 1553-1570 ◽  
Author(s):  
Stepan Aleshin ◽  
Georg Reiser

Abstract Overwhelming evidence shows that oxidative stress is a major cause in development of brain disorders. Low activity of the reactive oxygen species (ROS)-degrading system as well as high levels of oxidative damage markers have been observed in brain tissue of patients with neurodegenerative and other brain diseases to a larger extent than in healthy individuals. Many studies aimed to develop effective and safe antioxidant strategies for the therapy or prevention of brain diseases. Nevertheless, it became clear that rigorous suppression of ROS is deleterious for normal cell functioning. Thus, approaches that can regulate the ROS levels over a wide range, from inhibition to induction, will be a powerful tool for neuroprotection. A most prominent target for such ROS management is the family of peroxisome proliferator-activated receptors (PPARs). All three members (PPAR-α, -β/δ and -γ) of this nuclear receptor subfamily form a tightly connected triad. For individual PPAR isoforms, neuroprotective properties have been well proven. Their involvement in regulation of ROS production and degradation underlies the therapeutic effects. Nevertheless, the current paradigms of the involvement of PPAR in neuroprotective therapy ignore such interconnections of PPARs and aim at antioxidant effects of individual PPAR isoforms, but do not take into account the necessity of careful regulation of ROS levels. The present review (i) summarizes the data, which support the concept of the PPAR triad in brain, (ii) demonstrates that usage of the PPAR triad allows the regulation of PPAR-dependent genes over a wide range, from inhibition to upregulation, and (iii) summarizes the known data concerning the PPAR triad involvement in regulation of ROS. Our report opens new directions in the field of PPAR/ROS-related neuroscience research.


Sign in / Sign up

Export Citation Format

Share Document