scholarly journals Novel Synthetic-Based Drilling Fluid through Enzymatic Interesterification of Canola Oil

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Anawe A. L. Paul ◽  
Folayan J. Adewale

Over the years, the oil industries have avoided aromatic, naphthenic, and paraffinic oils as drilling mud base fluids principally because of their detrimental environmental issues on pelagic and benthic marine ecosystems as a result of their toxicity and nonbiodegradability coupled with the possible deterioration of the oil itself and the rubber parts of the drilling equipment because the aromatic hydrocarbons present in the oil have a tendency to dissolve/damage elastomers present in rubber. Hence, possible insights into how to chemically and/or physically produce synthetic base drilling fluids whose cuttings are nontoxic, readily biodegradable, environmentally friendly, and of nonpetroleum source become imperative. In this study, enzymatic interesterification of canola oil was done with ethanol by using enzyme lipase as catalyst under optimum conditions of temperature and pressure and the physicochemical properties of the produced ester were evaluated and compared with that of diesel and a synthetic hydrocarbon base fluid (SHBF). Results show that the specific gravity, kinematic viscosity, dynamic viscosity, and surface tension of canola oil were reduced by 5.50%, 94.74%, 95.03%, and 9.38%, respectively, upon enzymatic interesterification to conform to standard requirements. Similarly, increased |mud ability to pump fluids and possibility of cold temperature environment can be achieved with the reduction in pour point and cloud point, respectively, of the produced canola oil ester. Finally, the produced ester showed no aromatic content as confirmed from its FTIR analysis which indicates its nontoxicity, biodegradability, and environmental friendliness.

2021 ◽  
Vol 6 (7) ◽  
pp. 33-37
Author(s):  
A. D. I. Sulaiman ◽  
M. B. Adamu ◽  
Usman Hassan ◽  
S. M. Aliyu

Progress in drilling engineering demands more sophistication from the drilling mud in order to enhance the usage of drilling fluids, hence numerous additives were introduced, and a simple fluid became a complicated mixture of liquid, solid and chemicals. Some of the challenges with the existing drilling fluid additives has to do with compatibility, degradability, safety, cost, and environmental friendliness. Studies have been carried out on the economic benefits of Cissus Populnea which includes in areas of food, medicine, shelter, and transport but much attention has been paid to its applications in the Oil and Gas industry. This study investigates the rheological properties of Cissus Populnea for application as drilling fluid additive (viscosifier) in Water Based Drilling Mud. Fresh roots, stems and leaves of cissus populnea were sourced from Bayara, Bauchi State. Some liquid exudates of cissus populnea were collected and stored for analysis while some of the samples were dried and grinded in to powdered form. Exudate of the samples were characterized by FTIR, XRD and XRF. Drilling mud was formulated with the samples cisssus populnea and bentonite at different temperatures. The rheology of the formulated drilling mud was investigated and compared with that formulated using bentonite and carboxymethyl cellulose (CMC). Results from X-ray Fluorescence analysis show that the chemical composition of Cissus populnea stem and root are similar when comparing their major components (In2O3 and CaO), while that of leaf has its major components to be In2O3 and Cl. Therefore, in this research work, experiments were conducted with only stem and leaf since stem and roots have common features. From the results of FTIR spectra, the stem of cissus populnea has an OH peak wavelength of 3487.42 cm-1 while that of leave is 3340.82 cm-1. The diffractogram of the stem of cissus populnea was observed at 2q = 22.67o which is very close to that of CMC (2θ = 20.31o) while the intense peaks of leaf were observed at around 28.65o. Viscosity of cissus populnea was investigated and found to be decreasing with the increase in temperature for stem exudate. While for leaf exudate, the viscosity was rather increasing with the increase in temperature at temperatures below 35 oC and then continue to decrease with the increase in temperature. The outcome of this research has confirmed the applicability of cissus populnea for drilling fluid additives, viscosifier.


2007 ◽  
Vol 4 (1) ◽  
pp. 103 ◽  
Author(s):  
Ozcan Baris ◽  
Luis Ayala ◽  
W. Watson Robert

The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified) fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow. 


Author(s):  
Bunyami Shafie ◽  
Lee Huei Hong ◽  
Phene Neoh Pei Nee ◽  
Fatin Hana Naning ◽  
Tze Jin Wong ◽  
...  

Drilling mud is a dense, viscous fluid mixture used in oil and gas drilling operations to bring rock cuttings to the earth's surface from the boreholes as well as to lubricate and cool the drill bit. Water-based mud is commonly used due to its relatively inexpensive and easy to dispose of. However, several components and additives in the muds become increasingly cautious and restricted. Starch was introduced as a safe and biodegradable additive into the water-based drilling fluid, in line with an environmental health concern. In this study, the suitability of four local rice flours and their heat moistures derivatives to be incorporated in the formulation of water-based drilling fluid was investigated. They were selected due to their natural amylose contents (waxy, low, intermediate, and high). They were also heat moisture treated to increase their amylose contents. Results showed that the addition of the rice flours into water-based mud significantly reduced the density, viscosity, and filtrate volume. However, the gel strength of the mud was increased. The rice flours, either native or heat moisture treated, could serve as additives to provide a variety of low cost and environmentally friendly drilling fluids to be incorporated and fitted into different drilling activity.


Drilling operations from platforms in the North Sea result in the production of large quantities of drill cuttings. These are a variable mixture of rock chippings, clays and original drilling fluids. Drilling mud is cleaned on the platform to remove rock chips before re-use of the mud. The rejected fraction from the clean-up plant (the cuttings) contains some of the base drilling fluid, and this can lead to an organically rich input to the sea-bed. Cuttings are discarded immediately underneath the platform jacket and thus build-up over the natural seabed sediment. In many cases this cuttings pile may cover considerable areas of seabed, leading to seabed biological effects and potential corrosion problems. Different types of cuttings have different environmental impacts, this being partly dependent upon their hydrocarbon component. Diesel-oil based cuttings contain significant amounts of toxic aromatic hydrocarbons, whereas low-toxicity, kerosenebased cuttings contain less. Both types of cuttings support an active microbiological flora, initiated by hydrocarbon oxidation. This paper presents a study of microbiological degradation of hydrocarbons in cuttings piles around two North Sea platforms. Results indicate that there is a close correlation between microbiological activity and hydrocarbon breakdown in the surface of cuttings piles and that both of these parameters reach their maximum values closer to the platform when low-toxicity muds are in use.


2020 ◽  
Vol 26 (5) ◽  
pp. 211-230
Author(s):  
Adnan Ibrahim Barodi

Drilling fluid properties and formulation play a fundamental role in drilling operations. The Classical water-based muds prepared from only the Syrian clay and water without any additives((Organic and industrial polymers) are generally poor in performance. Moreover, The high quantity of Syrian clay (120 gr / l) used in preparing drilling fluids. It leads to a decrease in the drilling speed and thus an increase in the time required to complete the drilling of the well. As a result, the total cost of drilling the well increased, as a result of an increase in the concentration of the solid part in the drilling fluid. In this context, our study focuses on the investigation of the improvement in drilling mud   Prepared from the Syrian clay by reducing the clay concentration to (50 gr / L). And compensate for the remaining amount (70 gr / l) of clay by adding (natural and industrial polymers) The rheological properties and filtration are measured at different concentrations of polymers .. In light of the experiments, we determine the polymers' concentrations that gave good results in improving the flow properties and controlling the Filter. It is polymers that have given good results:، HEC، HEC and Xanthan Gum  PAC and HEC، CMCHV، PolyAcryl Amid ، Xanthan Gum .


2021 ◽  
Author(s):  
Kevin Whaley ◽  
Phillip J Jackson ◽  
Michael Wolanski ◽  
Tural Aliyev ◽  
Gumru Muradova ◽  
...  

Abstract Open Hole Gravel Pack (OHGP) completions have been the primary completion type for production wells in the Azeri-Chirag-Gunashli (ACG) field in Azerbaijan for 20 years. In recent years, it has been required to use well bore strengthening mud systems to allow drilling the more depleted parts of the field. This paper describes the major engineering effort that was undertaken to develop systems and techniques that would allow the successful installation of OHGP completions in this environment. OHGP completions have evolved over the last 3 decades, significantly increasing the window of suitable installation environments such that if a well could be drilled it could, in most cases, be completed as an OHGP if desired. Drilling fluids technology has also advanced to allow the drilling of highly depleted reservoirs with the development of well bore strengthening mud systems which use oversized solids in the mud system to prevent fracture propagation. This paper describes laboratory testing and development of well construction procedures to allow OHGPs to be successfully installed in wells drilled with well bore strengthening mud systems. Laboratory testing results showed that low levels of formation damage could be achieved in OHGPs using well bore strengthening mud systems that are comparable to those drilled with conventional mud systems. These drilling fluid formulations along with the rigorous mud conditioning and well clean-up practices that were developed were first implemented in mid-2019 and have now been used in 6 OHGP wells. All 6 wells showed that suitable levels of drilling mud cleanliness could be achieved with limited additional time added to the well construction process and operations and all of them have robust sand control reliability and technical limit skins. Historically it was thought that productive, reliable OHGP completions could not be delivered when using well bore strengthening mud systems due to the inability to effectively produce back filter cakes with large solids through the gravel pack and the ability to condition the mud system to allow sand screen deployment without plugging occurring. The engineering work and field results presented demonstrate that these hurdles can be overcome through appropriate fluid designs and well construction practices.


2016 ◽  
Vol 78 (6-7) ◽  
Author(s):  
Imros Kinif ◽  
Sonny Irawan ◽  
Abhilash M. Bharadwaj

The nature of solid content mechanism in drilling fluids directly affects its properties and causes adverse impact on drilling performance. It has rapidly evolved and become a paramount issue over the years because of challenging drilling operations. To control the impact of the drilled solids on drilling fluid properties, solid control system unit must be capable of removing the drilled solids before the re-circulation. Failure to establish good solid control management may end the operation strategy with dilution method. A rigorous analysis of drilled solid effects and its correlation with poor performance of solid control system significantly reflects on the overall rig performance in optimizing drilling operation. This paper presents a study of two different solid control system configuration used in two drilling wells. The study shows that installation of distributor tank reduces mud overflow and brings in flow control stability. Mud rheologies – Plastic viscosity, Yield Point and Low Gravity Solid are considered for the two solid control systems. The results of the new solid control system design are better than the old one. Plastic viscosity, yield point and low gravity solid values improve by 14 %, 17 % and 25 % respectively. These results can be used to check the drilling performance and also in characterization of the solid control system to enhance the drilling mud capabilities. This research shows the need of engineering evaluation in the solid control system to reduce the chances of frequent drilling problems, rig components wear issue and other drilling fluid related hazards.


2013 ◽  
Vol 829 ◽  
pp. 818-824
Author(s):  
Sahar Kafashi ◽  
Ramin Taghdimi ◽  
Gholamreza Karimi

This study was aimed to investigate the rheological properties and the possibility of nano(Na, Ca )- bentonites nanoproducts to meet the required drilling mud properties. Sepiolite (Sp) and the mixture of 2% nanoNaB with 1% Sp were collected and prepared from Irans oil Company (NIOC). The nanoclay performance evaluation involved the experimental tests of the rheological properties, filtration and gel strength. According to the results obtained from flow properties tests for the mixture, it was indicated that the mixture was not adequate to be a suitable drilling fluid. The main objective was to make stable dispersions with nanobentonite and sepiolite by using a water soluble polymer as stabilizer. The changes in the rheological properties of bentonite were investigated at various concentrations of polyvinyl alcohol (PVA) to discover the stability of the dispersions. The standard API tests were applied for drilling fluid to determine the properties of dispersions.


Author(s):  
Winarto S. ◽  
Sugiatmo Kasmungin

<em>In the process of drilling for oil and gas wells the use of appropriate drilling mud can reduce the negative impacts during ongoing drilling and post-drilling operations (production). In general, one of the drilling muds that are often used is conventional mud type with weighting agent barite, but the use of this type of mud often results in skin that is difficult to clean. Therefore in this laboratory research an experiment was carried out using a CaCO3 weigting agent called Mud DS-01. CaCO3 is widely used as a material for Lost Circulation Material so that it is expected that using CaCO3 mud will have little effect on formation damage or at least easily cleaned by acidizing. The aim of this research is to obtain a formula of mud with CaCO3 which at least gives formation damage. Laboratory experiments on this drilling mud using several mud samples adjusted to the property specifications of the mud program. Mud sample consists of 4, namely using super fine, fine, medium, and conventional CaCO3. First measuring mud properties in each sample then testing the filter cake breaker, testing the initial flow rate using 200 ml of distilled water and a 20 micron filter disk inserted in a 500 ml HPHT cell then assembled in a PPA jacket and injecting a pressure of 100 psi. The acidification test was then performed using 15% HCL and then pressured 100 psi for 3 hours to let the acid work to remove the cake attached to the filter disk (acidizing). Laboratory studies are expected which of these samples will minimize the formation damage caused by drilling fluids.</em>


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 327
Author(s):  
Ekaterina Leusheva ◽  
Nataliia Brovkina ◽  
Valentin Morenov

Drilling fluids play an important role in the construction of oil and gas wells. Furthermore, drilling of oil and gas wells at offshore fields is an even more complex task that requires application of specialized drilling muds, which are non-Newtonian and complex fluids. With regard to fluid properties, it is necessary to manage the equivalent circulation density because its high values can lead to fracture in the formation, loss of circulation and wellbore instability. Thus, rheology of the used drilling mud has a significant impact on the equivalent circulation density. The aim of the present research is to develop compositions of drilling muds with a low solids load based on salts of formate acid and improve their rheological parameters for wells with a narrow drilling fluid density range. Partially hydrolyzed polyacrylamide of different molecular weights was proposed as a replacement for hydrolized polyacrylamide. The experiment was conducted on a Fann rotary viscometer. The article presents experimentally obtained data of indicators such as plastic viscosity, yield point, nonlinearity index and consistency coefficient. Experimental data were analyzed by the method of approximation. Analysis is performed in order to determine the most suitable rheological model, which describes the investigated fluids’ flow with the least error.


Sign in / Sign up

Export Citation Format

Share Document