scholarly journals On Max-Plus Algebra and Its Application on Image Steganography

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Kiswara Agung Santoso ◽  
Fatmawati ◽  
Herry Suprajitno

We propose a new steganography method to hide an image into another image using matrix multiplication operations on max-plus algebra. This is especially interesting because the matrix used in encoding or information disguises generally has an inverse, whereas matrix multiplication operations in max-plus algebra do not have an inverse. The advantages of this method are the size of the image that can be hidden into the cover image, larger than the previous method. The proposed method has been tested on many secret images, and the results are satisfactory which have a high level of strength and a high level of security and can be used in various operating systems.

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1906
Author(s):  
Hyeokjoon Kweon ◽  
Jinsun Park ◽  
Sanghyun Woo ◽  
Donghyeon Cho

In this paper, we propose deep multi-image steganography with private keys. Recently, several deep CNN-based algorithms have been proposed to hide multiple secret images in a single cover image. However, conventional methods are prone to the leakage of secret information because they do not provide access to an individual secret image and often decrypt the entire hidden information all at once. To tackle the problem, we introduce the concept of private keys for secret images. Our method conceals multiple secret images in a single cover image and generates a visually similar container image containing encrypted secret information inside. In addition, private keys corresponding to each secret image are generated simultaneously. Each private key provides access to only a single secret image while keeping the other hidden images and private keys unrevealed. In specific, our model consists of deep hiding and revealing networks. The hiding network takes a cover image and secret images as inputs and extracts high-level features of the cover image and generates private keys. After that, the extracted features and private keys are concatenated and used to generate a container image. On the other hand, the revealing network extracts high-level features of the container image and decrypts a secret image using the extracted feature and a corresponding private key. Experimental results demonstrate that the proposed algorithm effectively hides and reveals multiple secret images while achieving high security.


Telematika ◽  
2020 ◽  
Vol 17 (1) ◽  
pp. 26
Author(s):  
Afif Irfan Abdurrahman ◽  
Bambang Yuwono ◽  
Yuli Fauziah

Flood disaster is a dangerous disaster, an event that occurs due to overflow of water resulting in submerged land is called a flood disaster. Almost every year Bantul Regency is affected by floods due to high rainfall. The flood disaster that struck in Bantul Regency made the Bantul District Disaster Management Agency (BPBD) difficult to handle so that it needed a mapping of the level of the impact of the flood disaster to minimize the occurrence of floods and provide information to the public.This study will create a system to map the level of impact of floods in Bantul Regency with a decision support method namely Multi Attribute Utility Theory (MAUT). The MAUT method stage in determining the level of impact of flood disasters through the process of normalization and matrix multiplication. The method helps in determining the areas affected by floods, by managing the Indonesian Disaster Information Data (DIBI). The data managed is data on criteria for the death toll, lost victims, damage to houses, damage to public facilities, and damage to roads. Each criteria data has a value that can be used to determine the level of impact of a flood disaster. The stages for determining the level of impact of a disaster require a weighting calculation process. The results of the weighting process display the scoring value which has a value of 1 = low, 2 = moderate, 3 = high. To assist in determining the affected areas using the matrix normalization and multiplication process the process is the application of the Multi Attribute Utility Theory (MAUT) method.This study resulted in a mapping of the level of impact displayed on google maps. The map view shows the affected area points and the level of impact of the flood disaster in Bantul Regency. The mapping produced from the DIBI data in 2017 produced the highest affected area in the Imogiri sub-district. The results of testing the data can be concluded that the results of this study have an accuracy rate of 95% when compared with the results of the mapping previously carried out by BPBD Bantul Regency. The difference in the level of accuracy is because the criteria data used are not the same as the criteria data used by BPBD in Bantul Regency so that the accuracy rate is 95%.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jin Wang

M M -2 semitensor product is a new and very useful mathematical tool, which breaks the limitation of traditional matrix multiplication on the dimension of matrices and has a wide application prospect. This article aims to investigate the solutions of the matrix equation A ° l X = B with respect to M M -2 semitensor product. The case where the solutions of the equation are vectors is discussed first. Compatible conditions of matrices and the necessary and sufficient condition for the solvability is studied successively. Furthermore, concrete methods of solving the equation are provided. Then, the case where the solutions of the equation are matrices is studied in a similar way. Finally, several examples are given to illustrate the efficiency of the results.


The growth rate of the Internet is exceeding that of any previous technology. As the Internet has become the major medium for transferring sensitive information, the security of the transferred message has now become the utmost priority. To ensure the security of the transmitted data, Image steganography has emerged out as an eminent tool of information hiding. The frequency of availability of image file is high and provides high capacity. In this paper, a method of secure data hiding in image is proposed that uses knight tour positions and further 8-queen positions in 8*8 pixel blocks.The cover image is divided into 8*8 pixel blocks and pixels are selected from each block corresponding to the positions of Knight in 8*8 chessboard starting from different pixel positions. 8-pixel values are selected from alternate knight position. Selected pixels values converted to 8-bit ASCII code and result in 8* 8 bit matrix. 8-Queen’s solution on 8*8 chessboard is applied on 8*8 bit matrix. The bits selected from 8-Queens positions and compared with 8-bit ASCII code of message characters. The proposed algorithm changes the LSB of only some of the pixels based on the above comparison. Based on parameters like PSNR and MSE the efficiency of the method is checked after implementation. Then the comparison done with some already proposed techniques. This is how, image steganography showed interesting and promising results when compared with other techniques.


Author(s):  
K. Waldherr ◽  
T. Huckle ◽  
T. Auckenthaler ◽  
U. Sander ◽  
T. Schulte-Herbrüggen

Author(s):  
Anukul Pandey ◽  
Barjinder Singh Saini ◽  
Butta Singh ◽  
Neetu Sood

Signal processing technology comprehends fundamental theory and implementations for processing data. The processed data is stored in different formats. The mechanism of electrocardiogram (ECG) steganography hides the secret information in the spatial or transformed domain. Patient information is embedded into the ECG signal without sacrificing the significant ECG signal quality. The chapter contributes to ECG steganography by investigating the Bernoulli's chaotic map for 2D ECG image steganography. The methodology adopted is 1) convert ECG signal into the 2D cover image, 2) the cover image is loaded to steganography encoder, and 3) secret key is shared with the steganography decoder. The proposed ECG steganography technique stores 1.5KB data inside ECG signal of 60 seconds at 360 samples/s, with percentage root mean square difference of less than 1%. This advanced 2D ECG steganography finds applications in real-world use which includes telemedicine or telecardiology.


As various theoretical and practical details of using membrane computing models have been presented throughout the book, certain details might be hard to find at a later time. For this reason, this chapter provides the reader with a set of checkmark topics that a developer should address in order to implement a robot controller using a membrane computing model. The topics discussed address areas such as: (1) robot complexity, (2) number of robots, (3) task complexity, (4) simulation versus real world execution, (5) sequential versus parallel implementations. This chapter concludes with an overview of future research directions. These directions offer possible solutions for several important concerns: the development of complex generic algorithms that use a high level of abstraction, the design of swarm algorithms using a top-down (swarm-level) approach and ensuring the predictability of a controller by using concepts such as those used in real-time operating systems.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 143 ◽  
Author(s):  
Ruidong Wu ◽  
Bing Liu ◽  
Ping Fu ◽  
Junbao Li ◽  
Shou Feng

Matrix multiplication is a critical time-consuming processing step in many machine learning applications. Due to the diversity of practical applications, the matrix dimensions are generally not fixed. However, most matrix calculation methods, based on field programmable gate array (FPGA) currently use fixed matrix dimensions, which limit the flexibility of machine learning algorithms in a FPGA. The bottleneck lies in the limited FPGA resources. Therefore, this paper proposes an accelerator architecture for matrix computing method with changeable dimensions. Multi-matrix synchronous calculation concept allows matrix data to be processed continuously, which improves the parallel computing characteristics of FPGA and optimizes the computational efficiency. This paper tests matrix multiplication using support vector machine (SVM) algorithm to verify the performance of proposed architecture on the ZYNQ platform. The experimental results show that, compared to the software processing method, the proposed architecture increases the performance by 21.18 times with 9947 dimensions. The dimension is changeable with a maximum value of 2,097,151, without changing hardware design. This method is also applicable to matrix multiplication processing with other machine learning algorithms.


2015 ◽  
Vol 668 ◽  
pp. 28-38 ◽  
Author(s):  
Claudio Roberto Passatore ◽  
Alcides Lopes Leão ◽  
Derval dos Santos Rosa

The main objective of this investigation was to study the properties of composites of polypropylene (PP) containing different proportions (20, 40 and 60% wt%) of coir short fiber (natural vegetable fiber) without treatment of fibers, for use in products by injection with applications in the automotive industries, construction and other segments. Samples were prepared in a only stage using a high intensity thermokinetic mixer (K-Mixer). Additives were used in the mass fraction of 3 wt% compatibilizer (PP-g-MA), 2.2 wt% processing additive and 0.12 wt% thermal antioxidant. The composites were characterized by tensile test according to ASTM D638-10. The surface properties of the polymeric matrix with additives were studied by determining the contact angle (CA) in a sessile drop tensiometer and the carbonyl index (CI) by Fourier-transform infrared spectroscopy (FTIR). Thermal properties of the PP and the composition were evaluated by thermogravimetric test, and the interface of the fiber and the matrix in the composites were evaluated using images from scanning electron microscopy (SEM). The CA analysis showed that the PP matrix with additives has become less hydrophobic and the FTIR and the CI that there was a better stabilization of the PP with additives. There was an increase in thermal stability of the composites for all fiber content, which was up to 15 °C above PP for coir fiber composites. In the Young's modulus values showed that the inclusion of fibers reinforced the polymeric matrix and increased the stiffness of the composites, especially in composites containing 60% (wt%) in which the values were ~1.7 times greater than the polypropylene. Images of micrographs showed the interaction of the fiber in the matrix and that despite the hydrophilic character of the fibers and hydrophobic character of the PP, the composites showed non-homogeneous interfaces. These findings confirm the feasibility of using high level of coir fiber in polypropylene composites even without pretreatment of the fibers and the preparation of samples by injection.


Sign in / Sign up

Export Citation Format

Share Document