scholarly journals Prediction of Lard in Palm Olein Oil Using Simple Linear Regression (SLR), Multiple Linear Regression (MLR), and Partial Least Squares Regression (PLSR) Based on Fourier-Transform Infrared (FTIR)

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Siong Fong Sim ◽  
Min Xuan Laura Chai ◽  
Amelia Laccy Jeffrey Kimura

Fourier-transform infrared (FTIR) offers the advantages of rapid analysis with minimal sample preparation. FTIR in combination with multivariate approach, particularly partial least squares regression (PLSR), has been widely used for adulterant analysis. Limited study has been done to compare PLSR with other regression strategies. In this paper, we apply simple linear regression (SLR), multiple linear regression (MLR), and PLSR for prediction of lard in palm olein oil. Pure palm olein oil was adulterated with lard at different concentrations and subjected to analysis with FTIR. The marker bands distinguishing lard and palm olein oil were determined using Fisher’s weights. The marker regions were then subjected to regression analysis with the models verified based on 100 training/test sets. The prediction performance was measured based on the percentage root mean square error (%RMSE). The absorption bands at 3006 cm−1, 2852 cm−1, 1117 cm−1, 1236 cm−1, and 1159 cm−1 were identified as the marker bands. The bands at 3006 and 1117 cm−1 were found with satisfactory predictive ability, with PLSR demonstrating better prediction yielding %RMSE of 16.03 and 13.26%, respectively.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Gifty E. Acquah ◽  
Brian K. Via ◽  
Oladiran O. Fasina ◽  
Lori G. Eckhardt

Fourier transform infrared reflectance (FTIR) spectroscopy has been used to predict properties of forest logging residue, a very heterogeneous feedstock material. Properties studied included the chemical composition, thermal reactivity, and energy content. The ability to rapidly determine these properties is vital in the optimization of conversion technologies for the successful commercialization of biobased products. Partial least squares regression of first derivative treated FTIR spectra had good correlations with the conventionally measured properties. For the chemical composition, constructed models generally did a better job of predicting the extractives and lignin content than the carbohydrates. In predicting the thermochemical properties, models for volatile matter and fixed carbon performed very well (i.e.,R2> 0.80, RPD > 2.0). The effect of reducing the wavenumber range to the fingerprint region for PLS modeling and the relationship between the chemical composition and higher heating value of logging residue were also explored. This study is new and different in that it is the first to use FTIR spectroscopy to quantitatively analyze forest logging residue, an abundant resource that can be used as a feedstock in the emerging low carbon economy. Furthermore, it provides a complete and systematic characterization of this heterogeneous raw material.


Sign in / Sign up

Export Citation Format

Share Document