scholarly journals 6′-O-Galloylpaeoniflorin Attenuates Cerebral Ischemia Reperfusion-Induced Neuroinflammation and Oxidative Stress via PI3K/Akt/Nrf2 Activation

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Zhongmei Wen ◽  
Weichen Hou ◽  
Wei Wu ◽  
Yang Zhao ◽  
Xuechao Dong ◽  
...  

6′-O-galloylpaeoniflorin (GPF), a galloylated derivative of paeoniflorin isolated from peony root, has been proven to possess antioxidant potential. In this present study, we revealed that GPF treatment exerted significant neuroprotection of PC12 cells following OGD, as evidenced by a reduction of oxidative stress, inflammatory response, cellular injury, and apoptosis in vitro. Furthermore, treatment with GPF increased the levels of phosphorylated Akt (p-Akt) and nuclear factor-erythroid 2-related factor 2 (Nrf2), as well as promoted Nrf2 translocation in PC12 cells, which could be inhibited by Ly294002, an inhibitor of phosphoinositide 3-kinase (PI3K). In addition, Nrf2 knockdown or Ly294002 treatment significantly attenuated the antioxidant, anti-inflammatory, and antiapoptotic activities of GPF in vitro. In vivo studies indicated that GPF treatment significantly reduced infarct volume and improved neurological deficits in rats subjected to CIRI, as well as decreased oxidative stress, inflammation, and apoptosis, which could be inhibited by administration of Ly294002. In conclusion, these results revealed that GPF possesses neuroprotective effects against oxidative stress, inflammation, and apoptosis after ischemia-reperfusion insult via activation of the PI3K/Akt/Nrf2 pathway.

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5558
Author(s):  
Juan Chen ◽  
Yixuan Chen ◽  
Yangfan Zheng ◽  
Jiawen Zhao ◽  
Huilin Yu ◽  
...  

This research assessed the molecular mechanism of procyanidins (PCs) against neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolite 1-methyl-4-phenylpyridinium (MPP+) induced Parkinson’s disease (PD) models. In vitro, PC12 cells were incubated with PCs or deprenyl for 24 h, and then exposed to 1.5 mM MPP+ for 24 h. In vivo, zebrafish larvae (AB strain) 3 days post-fertilization (dpf) were incubated with deprenyl or PCs in 400 μM MPTP for 4 days. Compared with MPP+/MPTP alone, PCs significantly improved antioxidant activities (e.g., glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT)), and decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Furthermore, PCs significantly increased nuclear Nrf2 accumulation in PC12 cells and raised the expression of NQO1, HO-1, GCLM, and GCLC in both PC12 cells and zebrafish compared to MPP+/MPTP alone. The current study shows that PCs have neuroprotective effects, activate the nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and alleviate oxidative damage in MPP+/MPTP-induced PD models.


2021 ◽  
Vol 11 ◽  
Author(s):  
Renhe Wang ◽  
Haijun Zhao ◽  
Yingyu Zhang ◽  
Hai Zhu ◽  
Qiuju Su ◽  
...  

Renal ischemia–reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and has no effective treatment. Exploring the molecular mechanisms of renal IRI is critical for the prevention of AKI and its evolution to chronic kidney disease and end-stage renal disease. The aim of the present study was to determine the biological function and molecular mechanism of action of miR-92a-3p in tubular epithelial cell (TEC) pyroptosis. We investigated the relationship between nuclear factor-erythroid 2-related factor 1 (Nrf1) and TEC pyroptosis induced by ischemia–reperfusion in vivo and oxygen–glucose deprivation/reoxygenation (OGD/R) in vitro. MicroRNAs (miRNAs) are regulators of gene expression and play a role in the progression of renal IRI. Nrf1 was confirmed as a potential target for miRNA miR-92a-3p. In addition, the inhibition of miR-92a-3p alleviated oxidative stress in vitro and decreased the expression levels of NLRP3, caspase-1, GSDMD-N, IL-1β, and IL-18 in vitro and in vivo. Moreover, Zn-protoporphyrin-IX, an inhibitor of heme oxygenase-1, reduced the protective effect of Nrf1 overexpression on OGD/R-induced TEC oxidative stress and pyroptosis. The results of this study suggest that the inhibition of miR-92a-3p can alleviate TEC oxidative stress and pyroptosis by targeting Nrf1 in renal IRI.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Jing Zeng ◽  
Long Zhu ◽  
Jing Liu ◽  
Tao Zhu ◽  
Zhaohui Xie ◽  
...  

Previous studies have shown that metformin not only is a hypoglycemic agent but also has neuroprotective effects. However, the mechanism of action of metformin in ischemic stroke is unclear. Oxidative stress is an important factor in the pathogenesis of cerebral ischemia-reperfusion injury. It has been reported that metformin is associated with stroke risk in the clinical population. This study is aimed at investigating the effect and mechanism of metformin in an experimental model of oxidative stress induced by ischemia/reperfusion (I/R) in vivo and oxygen glucose deprivation/reperfusion (OGD/R) in vitro. Metformin (100, 200, and 300 mg/kg) was administered intraperitoneally immediately after induction of cerebral ischemia. The indicators of oxidative stress selected were antioxidant enzyme activities of catalase, malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and glutathione peroxidation enzyme (GSHPx). First, we demonstrated that metformin can significantly alleviate acute and chronic cerebral I/R injury and it has a strong regulatory effect on stroke-induced oxidative stress. It can reduce the elevated activities of MDA and NO and increase the levels of GSHPx and SOD in the cerebrum of mice and N2a cells exposed to I/R. Furthermore, real-time PCR and western blot were used to detect the expression of long noncoding RNA H19 (lncRNA-H19), microRNA-148a-3p (miR-148a-3p), and Rho-associated protein kinase 2 (Rock2). The direct interaction of lncRNA-H19, miR-148a-3p, and Rock2 was tested using a dual luciferase reporter assay. lncRNA-H19 altered OGD/R-induced oxidative stress by modulating miR-148a-3p to increase Rock2 expression. The expression of lncRNA-H19 and Rock2 could be downregulated with metformin in vivo and in vitro. In conclusion, our study confirmed that metformin exerts neuroprotective effects by regulating ischemic stroke-induced oxidative stress injury via the lncRNA-H19/miR-148a-3p/Rock2 axis. These results provide new evidence that metformin may represent a potential treatment for stroke-related brain injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yijia Fangma ◽  
Huifen Zhou ◽  
Chongyu Shao ◽  
Li Yu ◽  
Jiehong Yang ◽  
...  

Hydroxysafflor yellow A (HSYA) and anhydrosafflor yellow B (AHSYB) are the main water-soluble compounds in Carthamus tinctorius L. However, studies on the effect of AHSYB on cerebral ischemia/reperfusion (I/R) injury and the therapeutic effect of HSYA by regulating silent information regulator 1 (SIRT1) pathway remain obscure. In this study, we investigated whether the neuroprotective effects of HSYA and AHSYB on oxygen-glucose deprivation/reoxygenation in primary-cultured hippocampal neuronal cells and the middle cerebral artery occlusion and reperfusion model in rats are associated with the regulation of the SIRT1 pathway. In vitro, HSYA and AHSYB increased cell viability, depressed oxidation properties, and reduced neuronal cell apoptosis. In vivo results showed that HSYA and AHSYB effectively reduced infarct volume, improved neurological function, suppressed apoptosis, and decreased the oxidative stress reaction. Besides, RT-PCR and Western blot analysis showed that HSYA and AHSYB increased the mRNA and protein expressions of the main factors in the SIRT1 pathway, including SIRT1, forkhead box O (FOXO) 1, and peroxisome proliferator–activated receptor coactivator 1α (PGC1α), decreased the expression of Bax, and increased the expression of Bcl-2. The results from immunohistochemistry also showed that the expressions of SIRT1, FOXO1, and PGC1α were increased after treatment with HSYA and AHSYB. Furthermore, the neuroprotective effects of HSYA and AHSYB were abolished by EX527 (SIRT1–specific inhibitor). These results indicated that HSYA and AHSYB should be developed into potential drugs for treating cerebral I/R injury via the SIRT1 pathway. Although HSYA and AHSYB have different chemical structures, both of them exert similar neuroprotective properties against I/R injury in vitro and in vivo, which means that AHSYB is also a non-negligible component in safflower.


Author(s):  
Jun Ling ◽  
Haijian Cai ◽  
Muya Lin ◽  
Shunli Qi ◽  
Jian Du ◽  
...  

Abstract It has been widely accepted that autophagic cell death exacerbates the progression of cerebral ischemia/reperfusion (I/R). Our previous study revealed that overexpression of reticulon protein 1-C (RTN1-C) is involved in cerebral I/R injury. However, the underlying mechanisms have not been studied intensively. This study was designed to evaluate the effect of RTN1-C on autophagy under cerebral I/R. Using an in vitro oxygen-glucose deprivation followed by reoxygenation and a transient middle cerebral artery occlusion model in rats, we found that the expression of RTN1-C protein was significantly upregulated. We also revealed that RTN1-C knockdown suppressed overactivated autophagy both in vivo and in vitro, as indicated by decreased expressions of autophagic proteins. The number of Beclin-1/propidium iodide-positive cells was significantly less in the LV-shRTN1-C group than in the LV-shNC group. In addition, rapamycin, an activator of autophagy, aggravated cerebral I/R injury. RTN1-C knockdown reduced brain infarct volume, improved neurological deficits, and attenuated cell vulnerability to cerebral I/R injury after rapamycin treatment. Taken together, our findings demonstrated that the modulation of autophagy from RTN1-C may play vital roles in cerebral I/R injury, providing a potential therapeutic treatment for ischemic brain injury.


2020 ◽  
pp. 096032712098422
Author(s):  
Xiaobin Liu ◽  
Min Li ◽  
Jiabao Zhu ◽  
Weidong Huang ◽  
Jinning Song

Sestrin2 (SESN2) is stress-inducible protein that confers cytoprotective effects against various noxious stimuli. Accumulating evidence has documented that SESN2 has potent anti-apoptosis and anti-oxidative stress functions. However, whether it provides neuroprotection in traumatic brain injury (TBI) models remains unexplored. The purpose of this study was to explore the regulatory effect of SESN2 on TBI using in vivo and in vitro models. We found that TBI resulted in a marked induction of SESN2 in the cerebral cortex tissues of mice. SESN2 overexpression in the brain by in vivo gene transfer significantly decreased neurological deficit, brain edema, and neuronal apoptosis of mice with TBI. Moreover, the overexpression of SESN2 significantly decreased the oxidative stress induced by TBI in mice. In vitro studies of TBI demonstrated that SESN2 overexpression decreased apoptosis and oxidative stress in scratch-injured cortical neurons. Notably, SESN2 overexpression increased the nuclear levels of nuclear factor-erythroid 2-related factor 2 (Nrf2) and enhanced the activation of Nrf2 antioxidant signaling in in vivo and in vitro models of TBI. In addition, the inhibition of Nrf2 significantly abolished SESN2-mediated neuroprotective effects in vivo and in vitro. In conclusion, these results of our work demonstrate that SESN2 protects against TBI by enhancing the activation of Nrf2 antioxidant signaling.


2020 ◽  
Vol 48 (9) ◽  
pp. 030006052094585 ◽  
Author(s):  
Chengli Ling ◽  
Chang Lei ◽  
Manshu Zou ◽  
Xiong Cai ◽  
Yun Xiang ◽  
...  

Objective The therapeutic efficacy of apigenin in PC12 cells and rats remains uncertain. The aim of this study was to investigate the neuroprotective effects of apigenin against cerebral ischemia/reperfusion injury, both in vitro and in vivo. Methods We first treated PC12 cells with cobalt chloride (CoCl2) to create a model of oxidative stress injury. Cell viability was then determined using a multifunctional microplate reader. In addition, reactive oxygen species (ROS) levels, apoptosis, and mitochondrial membrane potentials (MMPs) were examined using high-content cytometer analysis. The efficacy of apigenin treatment was also analyzed in a rat middle cerebral artery occlusion (MCAO) model using TTC staining and neurological deficit scores. Results The half-inhibitory concentration of CoCl2 was 1.2 mM. Pretreatment with 10 µg ⋅ mL−1 apigenin significantly enhanced cell viability, reduced ROS levels, alleviated apoptosis, and improved MMP in PC12 cells with CoCl2-induced injury in vitro. In addition, apigenin treatment in vivo significantly improved neurological deficit scores and reduced infarct areas in MCAO rats. These results suggest that the neuroprotective mechanisms of apigenin may be related to mitochondrial activation. Conclusions Apigenin had excellent neuroprotective effects for the treatment of cerebral ischemia/reperfusion injury in vitro and in vivo.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xiangli Yan ◽  
Aiming Yu ◽  
Haozhen Zheng ◽  
Shengxin Wang ◽  
Yingying He ◽  
...  

Neuronal apoptosis induced by oxidative stress is a major pathological process that occurs after cerebral ischemia-reperfusion. Calycosin-7-O-β-D-glucoside (CG) is a representative component of isoflavones in Radix Astragali (RA). Previous studies have shown that CG has potential neuroprotective effects. However, whether CG alleviates neuronal apoptosis through antioxidant stress after ischemia-reperfusion remains unknown. To investigate the positive effects of CG on oxidative stress and apoptosis of neurons, we simulated the ischemia-reperfusion process in vitro using an immortalized hippocampal neuron cell line (HT22) and oxygen-glucose deprivation/reperfusion (OGD/R) model. CG significantly improved cell viability and reduced oxidative stress and neuronal apoptosis. In addition, CG treatment upregulated the expression of SIRT1, FOXO1, PGC-1α, and Bcl-2 and downregulated the expression of Bax. In summary, our findings indicate that CG alleviates OGD/R-induced damage via the SIRT1/FOXO1/PGC-1α signaling pathway. Thus, CG maybe a promising therapeutic candidate for brain injury associated with ischemic stroke.


2018 ◽  
Vol 51 (3) ◽  
pp. 1354-1363 ◽  
Author(s):  
Yang Li ◽  
Liquan Tong ◽  
Jingyan Zhang ◽  
Yafeng Zhang ◽  
Feng  Zhang

Background/Aims: Liver ischemia-reperfusion (I/R) injury is a pathological process that often occurs during liver and trauma surgery. There are numerous causes of liver I/R injury, but the mechanism is unknown. Galangin (GA) is a flavonoid, a polyphenolic compound widely distributed in medicinal herbs that has anti-inflammatory, antioxidant, and antitumor activity. This study evaluated the protective effect of GA on hepatic I/R injury. Methods: An I/R model was created in male Wistar rats by clamping the hepatoportal vein, hepatic artery and hepatic duct for 30 min followed by reperfusion for 2 h. A hypoxia/restoration (H/R) model was established in buffalo rat liver (BRL) cells by hypoxia for 4 h followed by normoxic conditions for 10 h. The extent of liver injury was assayed by serum ALT/AST, hepatic histology, and MPO activity. Oxidative stress was assayed by serum superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondialdehyde (MDA). Expression of apoptosis-related proteins in BRL cells was assayed in western blots. Expression of AKT and p-AKT proteins in vivo and vitro were assayed in western blots. Results: GA significantly decreased ALT/AST expression, reversed changes in oxidative stress markers induced by I/R, and mediated caspase-3 activity expression of apoptosis-related proteins in vivo and in vitro. Methylthiazol tetrazolium (MTT) assay, flow cytometry, and Hoechst 33258 staining confirmed that GA inhibited apoptosis of BRL cells. GA also increased the expression of phosphorylated AKT after H/R. Conclusion: GA reduced liver I/R injury both in vivo and vitro and inhibited BRL cell apoptosis. PI3K/AKT signaling have been involved. GA may protect against liver I/R and be a potential therapeutic candidate.


2021 ◽  
Vol 12 ◽  
Author(s):  
Min-min Guo ◽  
Sheng-biao Qu ◽  
Hui-ling Lu ◽  
Wen-bo Wang ◽  
Mu-Liang He ◽  
...  

We have previously shown that biochanin A exhibits neuroprotective properties in the context of cerebral ischemia/reperfusion (I/R) injury. The mechanistic basis for such properties, however, remains poorly understood. This study was therefore designed to explore the manner whereby biochanin A controls endoplasmic reticulum (ER) stress, apoptosis, and inflammation within fetal rat primary cortical neurons in response to oxygen-glucose deprivation/reoxygenation (OGD/R) injury, and in a rat model of middle cerebral artery occlusion and reperfusion (MCAO/R) injury. For the OGD/R in vitro model system, cells were evaluated after a 2 h OGD following a 24 h reoxygenation period, whereas in vivo neurological deficits were evaluated following 2 h of ischemia and 24 h of reperfusion. The expression of proteins associated with apoptosis, ER stress (ERS), and p38 MAPK phosphorylation was evaluated in these samples. Rats treated with biochanin A exhibited reduced neurological deficits relative to control rats following MCAO/R injury. Additionally, GRP78 and CHOP levels rose following I/R modeling both in vitro and in vivo, whereas biochanin A treatment was associated with reductions in CHOP levels but further increases in GRP78 levels. In addition, OGD/R or MCAO/R were associated with markedly enhanced p38 MAPK phosphorylation that was alleviated by biochanin A treatment. Similarly, OGD/R or MCAO/R injury resulted in increases in caspase-3, caspase-12, and Bax levels as well as decreases in Bcl-2 levels, whereas biochanin A treatment was sufficient to reverse these phenotypes. Together, these findings thus demonstrate that biochanin A can alleviate cerebral I/R-induced damage at least in part via suppressing apoptosis, ER stress, and p38 MAPK signaling, thereby serving as a potent neuroprotective agent.


Sign in / Sign up

Export Citation Format

Share Document