scholarly journals A Novel Quadrature-Tracking Demodulator for LTE-A Applications

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Kang-Chun Peng ◽  
Chan-Hung Lee

This work develops an advanced quadrature-tracking demodulation technique for coherently demodulating the orthogonal frequency-division multiplexing (OFDM) signal of LTE-A systems. To overcome the fact that traditional coherent demodulators are extremely sensitive to the quadrature imbalance of a system, especially an OFDM system, the proposed architecture uses a novel quadrature phase-locked loop (QPLL) to track simultaneously the in phase (I-phase) and the quadrature phase (Q-phase) of the received signal. This advanced quadrature-tracking demodulator is realized using TSMC 0.18 μm CMOS technology and hybrid circuits. Experimental results indicate that the developed quadrature-tracking demodulator, which operates at 2.1~2.5 GHz, can effectively demodulate an 18 Mbps LTE-A signal, even with a 15 degree quadrature imbalance.

2018 ◽  
Vol 189 ◽  
pp. 04016
Author(s):  
Viet-Hung Nguyen ◽  
Minh-Tuan Nguyen ◽  
Yong-Hwa Kim

Orthogonal frequency division multiplexing (OFDM) is widely used in wired or wireless transmission systems. In the structure of OFDM, a cycle prefix (CP) has been exploited to avoid the effects of inter-symbol interference (ISI) and inter-carrier interference (ICI). This paper proposes a new approach to transmit the signals without CP transmission. Using the deep neural network, the proposed OFDM system transmits data without the CP. Simulation results show that the proposed scheme can estimate the CP at the receiver and overcome the effect of ISI.


Author(s):  
Heba Abdul-Jaleel Al-Asady ◽  
Hassan Falah Fakhruldeen ◽  
Mustafa Qahtan Alsudani

<p>Orthogonal frequency division multiplexing (OFDM) is a transmission system that uses multiple orthogonal carriers that are sent out at the same time. OFDM is a technique for mobile and wireless communication that has high-efficient frequency utilization, high data-rate transmission, simple and efficient implementation using the fast Fourier transform (FFT) and the inverse fast Fourier transform (IFFT), and reduces inter symbol interference (ISI) by inserting cyclic prefix (CP). One of the most important approaches in an OFDM system is channel estimation. In this paper, the orthogonal frequency division multiplexing system with the Rayleigh channel module is analyzed for different areas. The proposed approach used large numbers of subcarriers to transmit the signals over 64-QAM modulation with pilot add channel estimation. The accuracy of the OFDM system is shown in the measuring of the relationships of peak power to the noise ratio and bit error rate.</p>


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Saruti Gupta ◽  
Ashish Goel

Abstract The main drawback in the performance of the Orthogonal Frequency Division Multiplexing (OFDM) system is the higher Peak-to-Average Power Ratio (PAPR) of the OFDM signals at the transmitter side. Companding is a well-known technique useful for reducing PAPR in the OFDM signal. This paper proposes a new nonlinear companding scheme that transforms the magnitude of Rayleigh distributed OFDM signal of specific degree into trapezoidal distribution. Additional design parameter is used in the proposed companding scheme to make the companding function more flexible. In the designed OFDM system the companding function has more degree of freedom which improves the PAPR and bit error rate (BER) parameters of the designed system. It has been demonstrated that the designed companding scheme provides more flexibility to accomplish an optimum trade-off between the performance parameters PAPR and BER of the designed OFDM system.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Shilpi Gupta ◽  
Upena Dalal ◽  
Vishnu Narayan Mishra

In orthogonal frequency division multiplexing (OFDM) system, the existence of frequency offset in AWGN channel affects the orthogonality among the subcarriers and consequently introduces the intercarrier interference (ICI). The paper investigates new ICI self-cancellation technique to mitigate the effect of ICI in FFT-OFDM and compares it to DCT based OFDM system in terms of bit error rate (BER) and carrier to interference ratio (CIR). The proposed method for group size three results in a significant 20 dB improved CIR in FFT-OFDM. In terms of BER, proposed ICI self-cancellation technique outperforms the other self-cancellation techniques in FFT-OFDM. Also, this paper investigates outperforming BER and CIR improvement by using DCT-OFDM without applying self-cancellation techniques, due to its energy compaction property.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Qinbiao Yang ◽  
Zulin Wang ◽  
Qin Huang

Orthogonal frequency division multiplexing (OFDM) usually suffers high peak-to-average power ratio (PAPR). As shown in this paper, PAPR becomes even severe for sparse source due to many identical nonzero frequency OFDM symbols. Thus, this paper introduces compressive coded modulation (CCM) in order to restrain PAPR by reducing identical nonzero frequency symbols for sparse source. As a result, the proposed CCM-based OFDM system, together with iterative clipping and filtering, can efficiently restrain the high PAPR for sparse source. Simulation results show that it outperforms about 4 dB over the traditional OFDM system when source sparsity is 0.1.


2014 ◽  
Vol 548-549 ◽  
pp. 1221-1226
Author(s):  
Zeng You Sun ◽  
Fan Ming Zeng

In order to reduce the Orthogonal Frequency division Multiplexing (OFDM) Inter-Carrier Interference (ICI), Put forward a kind of modulation method that based on the orthogonal frequency division multiplexing of orthogonal wavelet, Using orthogonal wavelet instead of discrete Fourier transform, optimize the design for OFDM systems, on the premise of without protection interval to reduce the system interference, using MATLAB to simulate the OFDM system, results show that the optimization of the OFDM can reduce the power of the ICI and Inter-symbol Interference (ISI) and improve the comprehensive anti-jamming of the OFDM system.


2013 ◽  
Vol 765-767 ◽  
pp. 2858-2861
Author(s):  
Feng Zheng ◽  
Yun Tang ◽  
Hang Liu

Orthogonal Frequency Division Multiplexing (OFDM) is considered as an important technique for future wireless communications. In addition, OFDM has a better performance at inter symbol interference (ISI). One of the major disadvantages of the multi-carrier modulation is about the sensitivity of the performance to a frequency offset. In this paper, we propose an iterative algorithm of frequency offset estimation for the OFDM system. The fundamental algorithm of our iterative algorithm is the frequency pilot aided algorithm. When we get a result with the fundamental algorithm every time, we use the result to estimate for a second time. The algorithm we proposed does not require some additional pilots or changing the data structure of the fundamental algorithm.


2020 ◽  
Vol 3 (2) ◽  
pp. 45
Author(s):  
N. M. A. E. Dewi Wirastuti ◽  
I.G.A.K. Diafari Djuni Hartawan ◽  
I Made Arsa Suyadnya ◽  
Duman Care Khrisne

Orthogonal Frequency Division Multiplexing (OFDM) system showed the use of Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform (IDFT) to perform the baseband modulation and demodulation. So that, it can increase and improve the efficiency of the modulation and demodulation. Currently, the OFDM is being utilized in the field of broadband wireless communication, which transmit signals orthogonally, that increases speed of information transmission. It also has high proficiency with high bandwidth and provide large data rates and robust against the multipath delay spread. On the other hand, there are some issues faced OFDM system which are high Peak Average Power Ratio (PAPR), and sensitive to Phase Noise (PN) and Carrier Frequency Offset (CFO). This paper presents Orthogonal Frequency Division Multiplexing (OFDM) performance evaluation in the presence of CFO with two different environment scenarios were used: an AWGN channel and a Rayleigh fading channel. The simulation was performed to evaluate the effects of CFO based on Bit Error Rate (BER) vs. Energy Bit per Noise Ratio (Eb/No). The results showed that for BER degradation caused by CFO effects have presented in our simulation for both AWGN and Rayleigh fading channel.


Author(s):  
Zainab Noori Ghanim ◽  
Buthaina M. Omran

High peak to average power ration (PAPR) in orthogonal frequency division multiplexing (OFDM) is an important problem, which increase the cost and complexity of high power amplifiers. One of the techniques used to reduce the PAPR in OFDM system is the tone reservation method (TR). In our work we propose a modified tone reservation method to decrease the PAPR with low complexity compared with the conventional TR method by process the high and low amplitudes at the same time. An image of size 128×128 is used as a source of data that transmitted using OFDM system. The proposed method decrease the PAPR by 2dB compared with conventional method with keeping the performance unchanged. The performance of the proposed method is tested with several numbers of subcarriers; we found that the PAPR is reduced as the number of subcarriers decreased.


Sign in / Sign up

Export Citation Format

Share Document