scholarly journals Long Noncoding RNA GATA3-AS1 Promotes Cell Proliferation and Metastasis in Hepatocellular Carcinoma by Suppression of PTEN, CDKN1A, and TP53

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xuee Luo ◽  
Ning Zhou ◽  
Le Wang ◽  
Qinghua Zeng ◽  
Hongying Tang

Background. Long noncoding RNAs (lncRNAs) have been known to play important roles in the progression of various types of human cancer. LncRNA GATA3 antisense RNA 1, GATA3-AS1, has been reported to be associated with T-cell development and differentiation. However, the expression pattern and function of GATA3-AS1 in hepatocellular carcinoma (HCC) remain unknown. Methods. Real-time quantitative PCR (RT-qPCR) assay was conducted to detect GATA3-AS1 expression levels in 80 cases of pairs HCC tissues and matched normal tissues. Chi-squared (χ2) test was used to analyze the correlation between GATA3-AS1 expression and clinicopathologic variables. Survival curves were plotted using the Kaplan–Meier method and were compared via the log-rank test. The cell counting kit-8 (CCK-8) and wound scratch assays were applied to detect the effect of GATA3-AS1 knockdown and overexpression on cell growth and migration of HCC. RT-qPCR was performed for the detection of the phosphatase and tensin homolog (PTEN), cyclin-dependent kinase inhibitor 1A (CDKN1A), and tumor protein p53 (TP53) expression in HCC cells after GATA3-AS1 knockdown and overexpression. Results. GATA3-AS1 was significantly upregulated in HCC tissues compared with matched normal tissues. The high expression of GATA3-AS1 was significantly correlated with larger tumor size, advanced TNM stage, and more lymph node metastasis. High GATA3-AS1 expression was markedly correlated with shorter overall survival times of HCC patients. Furthermore, knockdown of GATA3-AS1 obviously inhibited Hep3B and HCCLM3 cell growth and migration, whereas overexpression of GATA3-AS1 had the opposite effects. In addition, GATA3-AS1 knockdown resulted in upregulated expression levels of tumor-suppressive genes, PTEN, CDKN1A, and TP53, in Hep3B and HCCLM3 cells, while restoration of GATA3-AS1 decreased PTEN, CDKN1A, and TP53 expression levels. Conclusion. Our data suggested that GATA3-AS1 promotes cell proliferation and metastasis of HCC by suppression of PTEN, CDKN1A, and TP53.

2021 ◽  
Vol 22 (16) ◽  
pp. 8841
Author(s):  
Sang Eun Ha ◽  
Seong Min Kim ◽  
Preethi Vetrivel ◽  
Hun Hwan Kim ◽  
Pritam Bhagwan Bhosale ◽  
...  

Scutellarein (SCU) is a well-known flavone with a broad range of biological activities against several cancers. Human hepatocellular carcinoma (HCC) is major cancer type due to its poor prognosis even after treatment with chemotherapeutic drugs, which causes a variety of side effects in patients. Therefore, efforts have been made to develop effective biomarkers in the treatment of HCC in order to improve therapeutic outcomes using natural based agents. The current study used SCU as a treatment approach against HCC using the HepG2 cell line. Based on the cell viability assessment up to a 200 μM concentration of SCU, three low-toxic concentrations of (25, 50, and 100) μM were adopted for further investigation. SCU induced cell cycle arrest at the G2/M phase and inhibited cell migration and proliferation in HepG2 cells in a dose-dependent manner. Furthermore, increased PTEN expression by SCU led to the subsequent downregulation of PI3K/Akt/NF-κB signaling pathway related proteins. In addition, SCU regulated the metastasis with EMT and migration-related proteins in HepG2 cells. In summary, SCU inhibits cell proliferation and metastasis in HepG2 cells through PI3K/Akt/NF-κB signaling by upregulation of PTEN, suggesting that SCU might be used as a potential agent for HCC therapy.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


2021 ◽  
Vol 20 ◽  
pp. 153303382110330
Author(s):  
Zhenzhao Luo ◽  
Yue Fan ◽  
Xianchang Liu ◽  
Shuiyi Liu ◽  
Xiaoyu Kong ◽  
...  

Background: Previous studies reported that N-myc downstream-regulated gene 1 (NDRG1) was upregulated in various cancer tissues and decreased expression of miR-188-3p and miR-133b could suppress cell proliferation, metastasis, and invasion and induce apoptosis of cancer cells. However, the molecular mechanism of NRDG1 involved in hepatocellular carcinoma (HCC) tumorigenesis is still unknown. Methods: The expressions of miR-188-3p, miR-133b, and NRDG1 in HCC tissues and cells were quantified by qRT-PCR and Western blot. MTT assay and transwell invasion assay were performed to evaluate cell growth and cell migration, respectively. Luciferase reporter assay were performed to determine whether miR-188-3p and miR-133b could directly bind to NRDG1 in HCC cells. Results: The results showed that NRDG1 was upregulated and these 2 microRNAs were downregulated in HCC tissues. NRDG1 was negatively correlated with miR-188-3p and miR-133b in HCC tissues. MiR-188-3p and miR-133b were demonstrated to directly bind to 3′UTR of NRDG1 and inhibit its expression. Upregulation of miR-188-3p and miR-133b reduced NRDG1 expression in hepatocellular carcinoma cell lines, which consequently inhibited cell growth and cell migration. Conclusions: Our finding suggested that miR-188-3p and miR-133b exert a suppressive effect on hepatocellular carcinoma proliferation, invasion, and migration through downregulation of NDRG1.


Gene ◽  
2018 ◽  
Vol 678 ◽  
pp. 129-136 ◽  
Author(s):  
Zhangjun Cheng ◽  
Zhengqing Lei ◽  
Pinghua Yang ◽  
Anfeng Si ◽  
Daimin Xiang ◽  
...  

2020 ◽  
Vol 168 (5) ◽  
pp. 547-555
Author(s):  
Jin Dou ◽  
Daoyuan Tu ◽  
Haijian Zhao ◽  
Xiaoyu Zhang

Abstract MiR-301a is as an oncogene involved in the regulation of gastric cancer (GC) progression, but the underlying mechanism is unclear. This study was to explore the lncRNA PCAT18/miR-301a/TP53INP1 axis in regulating the GC cell proliferation and metastasis. In the present study, GC tissues and cell lines were collected for the detection of PCAT18 expression. Herein, we found that PCAT18 is significantly decreases in human GC tissues and five GC cell lines. Overexpression of PCAT18 inhibits cell viability, invasion and migration of GC cells and tumour growth of GC xenograft tumours. PCAT18 negatively regulates the expression level of miR-301a. The interaction between PCAT18 and miR-301a is confirmed by RIP and RNA pull down. MiR-301a mimic increases cell viability and promotes cell migration and invasion and reverses the inhibitory action of PCAT18. TP53INP1 expression is negatively regulated by miR-301a and TP53INP1/miR-301a is involved in GC viability, migration and invasion. The promoting of PCAT18 on TP53INP1 expression is abolished by miR-301a overexpression. In conclusion, lncRNA PCAT18 acts as a tumour suppressor for GC and lncRNA PCAT18, miR-301a and TP53INP1 comprise a signal axis in regulating GC cell proliferation, migration and invasion.


Sign in / Sign up

Export Citation Format

Share Document