scholarly journals Comparison of Properties of Stem Cells Isolated from Adipose Tissue and Lipomas in Dogs

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Takahiro Teshima ◽  
Akito Matsuoka ◽  
Maika Shiba ◽  
Kazuho Dairaku ◽  
Hirotaka Matsumoto ◽  
...  

Adipose-derived mesenchymal stem cells (ADSCs) have been suggested their benefits in regenerative medicine for various diseases. Lipomas, benign neoplasms in adipose tissue, have been reported as a potential source of stem cells. These lipoma-derived mesenchymal stem cells (LDSCs) may be useful for regenerative medicine. However, the detailed characteristics of LDSCs have not been fully elucidated. This study investigated the cellular proteomics and secretomes of canine LDSCs in addition to morphology and proliferation and differentiation capacities. Some LDSCs isolated from canine subcutaneous lipomas were morphologically different from ADSCs and showed a rounded shape instead of fibroblast-like morphology. The phenotype of cell surface markers in LDSCs was similar to those in ADSCs, but CD29 and CD90 stem cell markers were more highly expressed compared with those of ADSCs. LDSCs had noticeably high proliferation ability, but no significant differences were observed compared with ADSCs. In regard to differentiation capacity compared to ADSCs, LDSCs showed higher adipogenesis, but no differences were observed with osteogenesis. Cellular proteomic analysis using two-dimensional gel electrophoresis revealed that over 95% of protein spots showed similar expression levels between LDSCs and ADSCs. Secretome analysis was performed using iTRAQ and quantitative cytokine arrays. Over 1900 proteins were detected in conditioned medium (CM) of LDSCs and ADSCs, and 94.0% of detected proteins showed similar expression levels between CM of both cell types. Results from cytokine arrays including 20 cytokines showed no significant differences between CM of LDSCs and that of ADSCs. Our results indicate that canine LDSCs had variability in characteristics among individuals in contrast with those of ADSCs. Cellular proteomics and secretomes were similar in both LDSCs and ADSCs. These findings suggest that LDSCs may be suitable for application in regenerative medicine.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 379
Author(s):  
Rabia Ikram ◽  
Shamsul Azlin Ahmad Shamsuddin ◽  
Badrul Mohamed Jan ◽  
Muhammad Abdul Qadir ◽  
George Kenanakis ◽  
...  

Thanks to stem cells’ capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Yi Wang ◽  
Youguo Ying ◽  
Xiaoyan Cui

Mesenchymal stem cells (MSCs) are multipotential cells with capability to form coloniesin vitroand differentiate into distinctive end-stage cell types. Although MSCs secrete many cytokines, the efficacy can be improved through combination with neurotrophic factors (NTFs). Moreover, MSCs are excellent opportunities for local delivery of NTFs into injured tissues. The aim of this present study is to evaluate the effects of overexpressing NTFs on proliferation and differentiation of human umbilical cord-derived mesenchymal stem cells (HUMSCs). Overexpressing NTFs had no effect on cell proliferation. Overexpressing NT-3, BDNF, and NGF also had no significant effect on the differentiation of HUMSCs. Overexpressing NTFs all promoted the neurite outgrowth of embryonic chick E9 dorsal root ganglion (DRG). The gene expression profiles of the control and NT-3- and BDNF-modified HUMSCs were compared using RNA sequencing and biological processes and activities were revealed. This study provides novel information about the effects of overexpressing NTFs on HUMSCs and insight into the choice of optimal NTFs for combined cell and gene therapy.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Li Hu ◽  
Jingqiong Hu ◽  
Jiajia Zhao ◽  
Jiarong Liu ◽  
Weixiang Ouyang ◽  
...  

Both human adipose tissue-derived mesenchymal stem cells (ASCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) have been explored as attractive mesenchymal stem cells (MSCs) sources, but very few parallel comparative studies of these two cell types have been made. We designed a side-by-side comparative study by isolating MSCs from the adipose tissue and umbilical cords from mothers delivering full-term babies and thus compared the various biological aspects of ASCs and UC-MSCs derived from the same individual, in one study. Both types of cells expressed cell surface markers characteristic of MSCs. ASCs and UC-MSCs both could be efficiently induced into adipocytes, osteoblasts, and neuronal phenotypes. While there were no significant differences in their osteogenic differentiation, the adipogenesis of ASCs was more prominent and efficient than UC-MSCs. In the meanwhile, ASCs responded better to neuronal induction methods, exhibiting the higher differentiation rate in a relatively shorter time. In addition, UC-MSCs exhibited a more prominent secretion profile of cytokines than ASCs. These results indicate that although ASCs and UC-MSCs share considerable similarities in their immunological phenotype and pluripotentiality, certain biological differences do exist, which might have different implications for future cell-based therapy.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Keita Suzuki ◽  
Naoyuki Chosa ◽  
Shunsuke Sawada ◽  
Naoki Takizawa ◽  
Takashi Yaegashi ◽  
...  

Mesenchymal stem cells (MSCs) are involved in anti-inflammatory events and tissue repair; these functions are activated by their migration or homing to inflammatory tissues in response to various chemokines. However, the mechanism by which MSCs interact with other cell types in inflammatory tissue remains unclear. We investigated the role of periodontal ligament fibroblasts (PDL-Fs) in regulating the anti-inflammatory and osteogenic abilities of bone marrow-derived- (BM-) MSCs. The expression of monocyte chemotactic protein- (MCP-)1 was significantly enhanced by stimulation of PDL-Fs with inflammatory cytokines. MCP-1 induced the migratory ability of BM-MSCs but not PDL-Fs. Expression levels of anti-inflammatory and inflammatory cytokines were increased and decreased, respectively, by direct-contact coculture between MSCs and PDL-Fs. In addition, the direct-contact coculture enhanced the expression of MSC markers that play important roles in the self-renewal and maintenance of multipotency of MSCs, which in turn induced the osteogenic ability of the cells. These results suggest that MCP-1 induces the migration and homing of BM-MSCs into the PDL inflammatory tissue. The subsequent adherence of MSCs to PDL-Fs plays an immunomodulatory role to terminate inflammation during wound healing and upregulates the expression stem cell markers to enhance the stemness of MSCs, thereby facilitating bone formation in damaged PDL tissue.


2021 ◽  
Vol 10 (1) ◽  
pp. 547-554
Author(s):  
Jianmin Ling ◽  
Ailing Tian ◽  
Xin Yi ◽  
Nianfeng Sun

Abstract To research the paracrine role of adipose tissue-derived mesenchymal stem cells (ADMSCs) in promoting angiogenesis under the three-dimensional culture conditions consisting of a functionalized self-assembling peptide nanofiber hydrogel. ADMSCs were isolated, extracted, and then identified. Three kinds of peptides (RADAI-16, RGD, and KLT) were prepared, and a functionalized self-assembling peptide nanofiber hydrogel was produced by mixing RADAI-16, RGD, and KLT in a volume ratio 2:1:1. AFM was used to observe RADAI-16, RGD, KLT, and the functionalized self-assembling peptide nanofiber hydrogel. Then, ADMSCs were cultured under three-dimensional conditions consisting of the peptide nanofiber hydrogel, and AFM was used to observe cell migration. The ADMSCs in the common culture group (37°C, 5% CO2 cell culture box) and hypoxic culture group (37°C, 10% CO2, and 1% O2 hypoxic culture box) acted as controls. ADMSCs were three-dimensionally cultured in situ for 1 day, and then the concentrations of HGF and VEGF in the supernatant were determined by ELISA. Cells were extracted from the peptide nanofiber hydrogel, and HO-1 expression was detected by western blotting. ADMSCs have high expression levels of CD29, CD90, and CDl05 and low expression levels of CD34 and CD45. In addition, they can differentiate into adipocytes and osteocytes. The diameters of the fibers of RADAI-16, RGD, KLT, and the functionalized self-assembling peptide hydrogel are 17.34 ± 1.82, 15.50 ± 1.41, 13.77 ± 1.18, and 20.26 ± 1.25 nm, respectively. AFM indicated that cells in the functionalized self-assembling peptide nanofiber hydrogel migrated farther than those in RADAI-16. The concentrations of HGF under common, hypoxic, and three-dimensional culture conditions were 47.31 ± 6.75, 247.86 ± 17.59, and 297.25 ± 17.95 pg/mL, respectively, while the concentrations of VEGF were 218.30 ± 3.03, 267.13 ± 4.27, and 289.14 ± 3.11 pg/mL, respectively. Both HGF and VEGF were expressed more in the presence of the functionalized self-assembling peptide nanofiber hydrogel than in its absence (P < 0.05). Using western blotting, ADMSCs cultured under hypoxic and three-dimensional conditions were found to have high expression levels of HO-1. Culturing ADMSCs under three-dimensional conditions consisting of functionalized self-assembling peptide nanofiber hydrogels can promote their paracrine role in angiogenesis, such as HGF and VEGF, and hypoxia is one of the important elements.


2015 ◽  
Vol 70 (4) ◽  
pp. 464-467 ◽  
Author(s):  
S. A. Borzenok ◽  
D. S. Afanasyeva ◽  
M. B. Gushchina

Our understanding of the role of adipose tissue has been completely changed during the past decades. The knowledge of its contribution to endocrine and immune pathways opened the new insights on the pathogenesis and therapy of many diseases and new perspectives for the regenerative medicine. The further researches should be provided to study anatomy and functions of local fat depots in more details. Of the most interest is the orbital adipose tissue due to its origin from the neural crest. This review represents the current data about anatomy, structure, cell composition and biochemistry of orbital fat. The main attention is put to such cell types as adipocytes and adipose derived mesenchymal stem cells. The foreign authors’ findings on such characteristics of stem cells from orbital adipose tissue as CD markers and differential capacity are reviewed. The found evidences of interaction between orbital adipose tissue, eyeball and associated structures allow us to hypothesize that this fat depot may contribute to various ocular pathology. In this paper, we outlined the possible directions for further investigation and clinical application of orbital fat and cells its composing in ophthalmology, reconstructive and plastic surgery and regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document