A hybrid wind energy harvester using a slotted cylinder bluff body

2020 ◽  
Vol 64 (1-4) ◽  
pp. 119-127
Author(s):  
Junlei Wang ◽  
Guoping Li ◽  
Zunlong Jin ◽  
Guobiao Hu ◽  
Kun Zhang ◽  
...  

Harvesting energy from wind to supply low-power consumption devices has attracted numerous research interests in recent years. However, a traditional vortex-induced vibration energy harvester can only operate within a limited range of wind speed. Thus, how to broaden the effective wind speed range for energy harvesting is a challenging issue. In this paper, a slotted cylinder bluff body is proposed for being used in the design of a wind energy harvester. The physical prototype is manufactured and the wind tunnel test is performed for evaluating the actual performance of the prototyped energy harvester. The effect of the orientation of the slot on the performance of the proposed energy harvester is experimentally investigated. As compared to the traditional counterpart without the slot at the lateral side of the bluff body, the proposed energy harvester demonstrates the superiority for realizing broadband energy harvesting. Due to the introduction of the slot, and by carefully tuning the orientation of the slot, both the vortex-induced vibration and the galloping phenomena can be stimulated within two neighboring wind speed ranges, leading to the formation of an extremely broad bandwidth for energy harvesting.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yin Jen Lee ◽  
Yi Qi ◽  
Guangya Zhou ◽  
Kim Boon Lua

AbstractA silicon chip integrated microelectromechanical (MEMS) wind energy harvester, based on the vortex-induced vibration (VIV) concept, has been designed, fabricated, and tested as a proof-of-concept demonstration. The harvester comprises of a cylindrical oscillator attached to a piezoelectric MEMS device. Wind tunnel experiments are conducted to measure the power output of the energy harvester. Additionally, the energy harvester is placed within a formation of up to 25 cylinders to test whether the vortex interactions of multiple cylinders in formation can enhance the power output. Experiments show power output in the nanowatt range, and the energy harvester within a formation of cylinders yield noticeably higher power output compared to the energy harvester in isolation. A more detailed investigation conducted using computational fluid dynamics simulations indicates that vortices shed from upstream cylinders introduce large periodic transverse velocity component on the incoming flow encountered by the downstream cylinders, hence increasing VIV response. For the first time, the use of formation effect to enhance the wind energy harvesting at microscale has been demonstrated. This proof-of-concept demonstrates a potential means of powering small off-grid sensors in a cost-effective manner due to the easy integration of the energy harvester and sensor on the same silicon chip.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Zunlong Jin ◽  
Guoping Li ◽  
Junlei Wang ◽  
Zhien Zhang

Since the energy demand increases, the sources of fluid energy such as wind energy and marine energy have attracted widespread attention, especially vortex-induced vibrations excited by wind energy. It is well known that the lock-in effect in vortex-induced vibration can be applied to the piezoelectric energy harvester. Although numerous researches have been conducted on piezoelectric energy harvesting devices in recent years, a common problem of low bandwidth and harvesting efficiency still exists. In order to increase the response amplitude and decrease the threshold wind speed of vortex-induced vibration, a bionic attachment structure is proposed based on the experimental method. In the present work, twelve models are designed according to the size of pits and hemispheric protrusions which are added to the surface of a flexible smooth cylinder. Compared with the smooth cylinder which is taken as a carrier, the harvester with the bionic structure shows stronger energy capture performance on the whole. As the threshold speed decelerates from 1.8m/s to 1 m/s, the bandwidth, on the contrary, increases from 39.3% to 51.4%. Particularly, for the 10 mm pits structure with 5 columns, its peak voltage can reach 47 V, and its peak power can reach 1.21 mW with a resistance of 800 kΩ, 0.57 mW higher than that of the smooth cylinder. Comparatively speaking, the hemispherical projections structure figures with a much more different energy capturing characteristic. Starting from the column, the measured voltage of the hemispherical bionic harvester is much smaller than that of the smooth cylinder, with a peak voltage less than 15 V and a reducing bandwidth. However, compared with the smooth cylinder, hemispheric projections with 3 columns have a better energy capture effect with a measured voltage of 35V, a resistance of 800kΩ, and a wind speed of 3.097 m/s. Besides, its output power also enhances from 0.48 to 0.56 mW.


2011 ◽  
Vol 133 (1) ◽  
Author(s):  
Matthew Bryant ◽  
Ephrahim Garcia

This paper proposes a novel piezoelectric energy harvesting device driven by aeroelastic flutter vibrations of a simple pin connected flap and beam. The system is subject to a modal convergence flutter response above a critical wind speed and then oscillates in a limit cycle at higher wind speeds. A linearized analytical model of the device is derived to include the effects of the three-way coupling between the structural, unsteady aerodynamic, and electrical aspects of the system. A stability analysis of this model is presented to determine the frequency and wind speed at the onset of the flutter instability, which dictates the cut-in conditions for energy harvesting. In order to estimate the electrical output of the energy harvester, the amplitude and frequency of the flutter limit cycle are also investigated. The limit cycle behavior is simulated in the time domain with a semi-empirical nonlinear model that accounts for the effects of the dynamic stall over the flap at large deflections. Wind tunnel test results are presented to determine the empirical aerodynamic model coefficients and to characterize the power output and flutter frequency of the energy harvester as functions of incident wind speed.


2020 ◽  
Vol 2 (4) ◽  
pp. 511-522
Author(s):  
Zhangyi Liao ◽  
Anping Xiong ◽  
Renxin Liu

In many special agricultural environments, many wireless sensors have a problem of power supply selection. Energy harvesting in the agricultural environment based on vortex-induced vibration (VIV) has the potential to solve the problem. In this paper, an energy harvester based on the VIV is designed in an agricultural environment. Relevant parameters of the harvester are studied with wind tunnel experiment to improve the efficiency of energy conversation. The results show that: (i) For large mass ratio, m*≫1, and the same mass ratio m*, the smaller the damping ratio ζ, the larger the normalized amplitude A*, the larger the maximum efficiency η of VIV energy harvesting; (ii) m*≫1, and under a certain range of Reynolds numbers, the smaller the mass-damping parameter m*ζ, the larger the normalized amplitude A*, the larger the maximum and average efficiency η of VIV energy harvesting. (iii) m*≫1, the larger the mass ratio m*, the larger the range of resonance; the normalized frequency f*≃1, the stable VIV locked state appears. The research results can provide references for the design of VIV energy harvesters in agricultural environments.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2498
Author(s):  
Muhammad Abdullah Sheeraz ◽  
Muhammad Sohail Malik ◽  
Khalid Rehman ◽  
Hassan Elahi ◽  
Zubair Butt ◽  
...  

In the 21st century, researchers have been showing keen interest in the areas of wireless networking and internet of things (IoT) devices. Conventionally, batteries have been used to power these networks; however, due to the limited lifespan of batteries and with the recent advancements in piezoelectric technology, there is a dramatic increase in renewable energy harvesting devices. In this research, an eco-friendly wind energy harvesting device based on the piezoelectric technique is analytically modeled, numerically simulated, and statistically optimized for low power applications. MATLAB toolbox SIMSCAPE is utilized to simulate the proposed wind energy harvester in which a windmill is used to produce rotational motion due to the kinetic energy of wind. The windmill’s rotational shaft is further connected to the rotary to linear converter (RLC) and vibration enhancement mechanism (VEM) for the generation of translational mechanical vibration. Consequently, due to these alternative linear vibrations, the piezoelectric stack produces sufficient electrical output. The output response of the energy harvester is analyzed for the various conditions of piezoelectric thickness, wind speed, rotor angular velocity, and VEM stiffness. It is observed that the electrical power of the proposed harvester is proportional to the cube of wind speed and is inversely proportional to the number of rotor blades. Furthermore, an optimization strategy based on the full factorial design of the experiment is developed and implemented on MINITAB 18.0 for evaluating the statistical performance of the proposed harvester. It is noticed that a design with 3 rotor-blades, having 3 mm piezoelectric thickness, and 40 Nm−1 stiffness generates the optimum electrical response of the harvester.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 366
Author(s):  
Yang Xia ◽  
Yun Tian ◽  
Lanbin Zhang ◽  
Zhihao Ma ◽  
Huliang Dai ◽  
...  

We present an optimized flutter-driven triboelectric nanogenerator (TENG) for wind energy harvesting. The vibration and power generation characteristics of this TENG are investigated in detail, and a low cut-in wind speed of 3.4 m/s is achieved. It is found that the air speed, the thickness and length of the membrane, and the distance between the electrode plates mainly determine the PTFE membrane’s vibration behavior and the performance of TENG. With the optimized value of the thickness and length of the membrane and the distance of the electrode plates, the peak open-circuit voltage and output power of TENG reach 297 V and 0.46 mW at a wind speed of 10 m/s. The energy generated by TENG can directly light up dozens of LEDs and keep a digital watch running continuously by charging a capacitor of 100 μF at a wind speed of 8 m/s.


Sign in / Sign up

Export Citation Format

Share Document