scholarly journals Investigation of Epoxidized Palm Oils as Green Processing Aids and Activators in Rubber Composites

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
DongJu Lee ◽  
Sung Ho Song

Epoxidized palm oil (EPO) is environmentally friendly, biodegradable, and a relatively less costly processing aid. In this study, we investigated the suitability of EPO in place of aromatic processing oils in styrene butadiene rubber. The curing properties, mechanical properties, abrasion resistance, and heat buildup properties of rubber composites with EPO were compared with those of the standard with aromatic oils. The rubber composites with EPO showed enhanced mechanical properties including modulus, tensile strength, and elongation at break. This is ascribed to the improved dispersion of fillers in the rubber matrix and interaction between the filler and the polymer. Furthermore, EPO in the rubber matrix showed remarkable abrasion resistance, rebound resilience, and heat buildup at low loadings. EPO in a rubber composite presents feasibility as a renewable raw material that can serve as an alternative to petrochemical oils in various applications.

2020 ◽  
Vol 10 (20) ◽  
pp. 7244
Author(s):  
Sung Ho Song

As eco-friendly “green tires” are being developed in the tire industry, conventionally used carbon black is being replaced with silica in rubber compounds. Generally, as a lubricant and dispersing agent, processing aids containing zinc ions have been employed as additives. However, as zinc is a heavy metal, alternative eco-friendly processing aids are required to satisfy worldwide environmental concerns. Furthermore, non-toxic, degradable, and renewable processing aids are required to improve the mechanical properties of the rubber composites. In this study, we evaluated the effects of diverse silica-based processing aids containing hydrocarbon, benzene, and hydroxyl functional groups on the mechanical properties of rubber composites. Among them, rubber composites that used amphiphilic terpene phenol resin (TPR) with hydrophilic silica showed compatibility with the hydrophobic rubber matrix and were revealed to improve the mechanical and fatigue properties. Furthermore, owing to the enhanced dispersion of silica in the rubber matrix, the TPR/styrene butadiene rubber composites exhibited enhanced wet grip and rolling resistance. These results indicated that TPR had multifunctional effects at low levels and has the potential for use as a processing aid in silica-based rubber composites in tire engineering applications.


2021 ◽  
Author(s):  
S. Vishvanathperumal ◽  
Anand G

Abstract The main objective of the current research work is to explore the effect of nanosilica particles on the compound EPDM/SBR-SiO2 (ethylene-propylene-diene monomer/styrene-butadiene rubber-nanosilica). The composite EPDM/SBR with and without silane coupling agent was processed using an open mill mixer. The nanosilica particles are prepared in the laboratory and were used as the reinforcing material in EPDM/SBR rubber composites. The cure characteristics, mechanical properties, hardness, rebound resilience, swelling resistance, abrasion resistance and compression set of the composites are completely analyzed and studied. Nanosilic particles are produced in the laboratory and used as reinforcement material in EPDM/SBR rubber compounds. Fully analyzed and examined are the cure characteristics, mechanical properties, hardness, rebound resilience, swelling resistance, abrasion resistance and compression collection of the composites. It was also evident from the result that with the inclusion of nanosilica particles in the EPDM/SBR rubber composites, the mechanical properties, swelling resistance, hardness, abrasion resistance and compression set properties improved.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2413
Author(s):  
Mariapaola Staropoli ◽  
Vincent Rogé ◽  
Enzo Moretto ◽  
Joffrey Didierjean ◽  
Marc Michel ◽  
...  

The improvement of mechanical properties of polymer-based nanocomposites is usually obtained through a strong polymer–silica interaction. Most often, precipitated silica nanoparticles are used as filler. In this work, we study the synergetic effect occurring between dual silica-based fillers in a styrene-butadiene rubber (SBR)/polybutadiene (PBD) rubber matrix. Precipitated Highly Dispersed Silica (HDS) nanoparticles (10 nm) have been associated with spherical Stöber silica nanoparticles (250 nm) and anisotropic nano-Sepiolite. By imaging filler at nano scale through Scanning Transmission Electron Microscopy, we have shown that anisotropic fillers align only in presence of a critical amount of HDS. The dynamic mechanical analysis of rubber compounds confirms that this alignment leads to a stiffer nanocomposite when compared to Sepiolite alone. On the contrary, spherical 250 nm nanoparticles inhibit percolation network and reduce the nanocomposite stiffness.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 486 ◽  
Author(s):  
Elkid Cobani ◽  
Irene Tagliaro ◽  
Marco Geppi ◽  
Luca Giannini ◽  
Philippe Leclère ◽  
...  

Sepiolite (Sep)–styrene butadiene rubber (SBR) nanocomposites were prepared by using nano-sized sepiolite (NS-SepS9) fibers, obtained by applying a controlled surface acid treatment, also in the presence of a silane coupling agent (NS-SilSepS9). Sep/SBR nanocomposites were used as a model to study the influence of the modified sepiolite filler on the formation of immobilized rubber at the clay-rubber interface and the role of a self-assembled nanostructure in tuning the mechanical properties. A detailed investigation at the macro and nanoscale of such self-assembled structures was performed in terms of the organization and networking of Sep fibers in the rubber matrix, the nature of both the filler–filler and filler–rubber interactions, and the impact of these features on the reduced dissipative phenomena. An integrated multi-technique approach, based on dynamic measurements, nuclear magnetic resonance analysis, and morphological investigation, assessed that the macroscopic mechanical properties of clay nanocomposites can be remarkably enhanced by self-assembled filler structures, whose formation can be favored by manipulating the chemistry at the hybrid interfaces between the clay particles and the polymers.


2012 ◽  
Vol 430-432 ◽  
pp. 1076-1080
Author(s):  
Mei Chun Li ◽  
Xin Ge ◽  
Jong Hyuk Lim ◽  
Min Su Kim ◽  
Ur Ryong Cho

Starch/Styrene Butadiene Rubber (SBR) biocomposites were prepared by directly blending of starch and SBR on a two-roll miller. Two types of starch: pure starch and modified starch (M-starch) were used as rubber fillers. M-starch were synthesized by grafting of methyl methacrylate (MMA) monomer onto starch backbone using ceric ammonium nitrate-initiated radical polymerization. Coupling agent styrene-g-(maleic anhydride) (SMA) was used to further improve the interfacial interaction between the filler and rubber matrix. The morphology and mechanical properties of unmodified starch/SBR and M-starch/SBR biocomposites with SMA content of 0, 1, 3, and 5 phr were investigated. SEM observations showed the particle size of M-starch decreased and their dispersion in the SBR matrix significantly improved than unmodified starch. Mechanical properties of M-starch/SBR biocomposites were superior than those of unmodified starch/SBR biocomposites.


2011 ◽  
Vol 284-286 ◽  
pp. 401-410
Author(s):  
Qiong Qiong Liu

Mullite (3A12O3·2SiO2) is an aluminosilicate ceramic of great technological importance. We investigated its potential as fillers in rubber. Mullites untreated or treated with 3% γ-mecapto-propyltrimethoxysilane (A-189) were added into styrene-butadiene rubber (SBR) materials on a laboratory-sized two-roll mill. For comparison, commercial precipitated silica was also used. The effect of these fillers on the cure characteristics, processibility and mechanical properties of SBR at various loadings, ranging from 0 to 50 phr was investigated. The results showed that mullite was a semi-reinforcing filler for SBR materials and exhibits better overall cure properties, lower Mooney viscosity, lower tensile set, better resilience as compared to precipitated silica, while it is inferior to precipitated silica especially with regard to tensile strength, tear strength and abrasion resistance. The presence of the silane coupling agent can enhance mechanical properties of filled SBR vulcanizates to some extent.


2020 ◽  
Vol 137 (39) ◽  
pp. 49180
Author(s):  
Thulissery Velayudhan Jinitha ◽  
Kodakkat Parambil Safna Hussan ◽  
Thayyil Mohamed Shahin ◽  
Etathil Purushothaman

Sign in / Sign up

Export Citation Format

Share Document