scholarly journals Artificial Interference of Stress Field in a Near-Fracture show="" $6#?=""Zone by Water Injection in a Preexisting Crack

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Yongxiang Zheng ◽  
Jianjun Liu ◽  
Bohu Zhang

The in situ stress has an important influence on fracture propagation and fault stability in deep formation. However, the development of oil and gas resources can only be determined according to the existing state of in situ stress in most cases. It is passive acceptance of existing in situ stress. Unfortunately, in some cases, the in situ stress conditions are not conducive to resource development. If the in situ stress can be interfered in some ways, the stress can be adjusted to a more favorable state. In order to explore the method of artificial interference, this paper established the calculation method of the in situ stress around the cracks based on fracture mechanics at first and obtained the redistribution law of the in situ stress. Based on the obtained redistribution law, attempts were made to interfere with the surrounding in situ stress by water injection in the preexisting crack. On this basis, the artificial stress intervention was applied. The results show that artificial interference of stress can effectively be achieved by water injection in the fracture. And changing the fluid pressure in the crack is the most effective way. By stress artificial intervention, critical pressure for water channelling in fractured reservoirs, directional propagation of cracks in hydraulic fracturing, and stress adjustment on the structural plane were applied. This study provides guidance for artificial stress intervention in the exploitation of the underground resource.

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4570
Author(s):  
Aman Turakhanov ◽  
Albina Tsyshkova ◽  
Elena Mukhina ◽  
Evgeny Popov ◽  
Darya Kalacheva ◽  
...  

In situ shale or kerogen oil production is a promising approach to developing vast oil shale resources and increasing world energy demand. In this study, cyclic subcritical water injection in oil shale was investigated in laboratory conditions as a method for in situ oil shale retorting. Fifteen non-extracted oil shale samples from Bazhenov Formation in Russia (98 °C and 23.5 MPa reservoir conditions) were hydrothermally treated at 350 °C and in a 25 MPa semi-open system during 50 h in the cyclic regime. The influence of the artificial maturation on geochemical parameters, elastic and microstructural properties was studied. Rock-Eval pyrolysis of non-extracted and extracted oil shale samples before and after hydrothermal exposure and SARA analysis were employed to analyze bitumen and kerogen transformation to mobile hydrocarbons and immobile char. X-ray computed microtomography (XMT) was performed to characterize the microstructural properties of pore space. The results demonstrated significant porosity, specific pore surface area increase, and the appearance of microfractures in organic-rich layers. Acoustic measurements were carried out to estimate the alteration of elastic properties due to hydrothermal treatment. Both Young’s modulus and Poisson’s ratio decreased due to kerogen transformation to heavy oil and bitumen, which remain trapped before further oil and gas generation, and expulsion occurs. Ultimately, a developed kinetic model was applied to match kerogen and bitumen transformation with liquid and gas hydrocarbons production. The nonlinear least-squares optimization problem was solved during the integration of the system of differential equations to match produced hydrocarbons with pyrolysis derived kerogen and bitumen decomposition.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Chuanyin Jiang ◽  
Xiaoguang Wang ◽  
Zhixue Sun ◽  
Qinghua Lei

We investigated the effect of in situ stresses on fluid flow in a natural fracture network. The fracture network model is based on an actual critically connected (i.e., close to the percolation threshold) fracture pattern mapped from a field outcrop. We derive stress-dependent fracture aperture fields using a hybrid finite-discrete element method. We analyze the changes of aperture distribution and fluid flow field with variations of in situ stress orientation and magnitude. Our simulations show that an isotropic stress loading tends to reduce fracture apertures and suppress fluid flow, resulting in a decrease of equivalent permeability of the fractured rock. Anisotropic stresses may cause a significant amount of sliding of fracture walls accompanied with shear-induced dilation along some preferentially oriented fractures, resulting in enhanced flow heterogeneity and channelization. When the differential stress is further elevated, fracture propagation becomes prevailing and creates some new flow paths via linking preexisting natural fractures, which attempts to increase the bulk permeability but attenuates the flow channelization. Comparing to the shear-induced dilation effect, it appears that the propagation of new cracks leads to a more prominent permeability enhancement for the natural fracture system. The results have particularly important implications for predicting the hydraulic responses of fractured rocks to in situ stress fields and may provide useful guidance for the strategy design of geofluid production from naturally fractured reservoirs.


1982 ◽  
Vol 22 (03) ◽  
pp. 341-349 ◽  
Author(s):  
H.A.M. van Eekelen

Abstract One of the main problems in hydraulic fracturing technology is the prediction of fracture height. In particular, the question of what constitutes a barrier to vertical fracture propagation is crucial to the success of field operations. An analysis of hydraulic fracture containment effects has been performed. The main conclusion is that in most cases the fracture will penetrate into the layers adjoining the pay zone, the depth of penetration being determined by the differences in stiffness and in horizontal in-situ stress between the pay zone and the adjoining layers. For the case of a stiffness contrast, an estimate of the penetration depth is given. Introduction Current design procedures for hydraulic fracturing of oil and gas reservoirs are based predominantly on the fracturing theories of Perkins and Kern, Nordgren, and Geertsma and de Klerk. In the model proposed by Perkins and Kern, and improved by Nordgren, the formation stiffness is concentrated in vertical planes perpendicular to the direction of fracture propagation, The fracture cross section in these planes is assumed elliptical, and the stiffness of the formation in the horizontal plane is neglected. In the model proposed by Geertsma and de Klerk, the stiffness of the formation is concentrated in the horizontal plane. The fracture cross section in the vertical plane is assumed rectangular, and the stiffness in the vertical plane is neglected. In both models, the fluid pressure is assumed a function of the distance from the borehole, independent of the transverse coordinates. The theory by Perkins and Kern is more appropriate for long fractures (L/H >1, where L and H are length and height of the fracture), whereas the model by Geertsma and de Klerk is applicable for short fractures, L/H less than 1. The main shortcoming of these fracture-design procedures is that they assume a constant, preassigned fracture height. H. The value of H has a strong influence on the result, for fracture length, fracture width, and proppant transport. Usually, the estimated fracture height is based on assumed "barrier action" of rock layers above and below the pay zone. This situation is rather unsatisfactory. Moreover, if these layers do not contain the fracture, large volumes of fracturing fluid may be lost in fracturing unproductive strata, and communication with unwanted formations may be opened up. Whether an adjacent formation will act as a fracture barrier may depend on a number of factors: differences in in-situ stress, elastic properties, fracture toughness, ductility, and permeability; and the bonding at the interface. We analyze these factors with respect to their relative influence on fracture containment. Differences in in-situ stress and differences in elastic properties affect the global or overall stress field around the fracture, and, hence, the three-dimensional shape of the fracture. This shape, together with the horizontal and vertical fracture propagation rates, determines the fluid pressure distribution in the fracture, which in turn affects the stress field around the fracture. Consequently, the elastic stress field, the fluid pressure field, and the fracture propagation pattern are intimately coupled, which makes the fracture propagation problem a complicated one. Whether at a certain point of the fracture edge the fracture will propagate is determined by the intensity of the stress concentration at that point. This stress concentration depends on the global stress distribution in and around the fracture, but it also is affected directly by local ductility, permeability, and elastic modulus in the tip region. SPEJ P. 341^


2013 ◽  
Vol 395-396 ◽  
pp. 852-855 ◽  
Author(s):  
Li Gang Zhang ◽  
Hai Bo Wang ◽  
Xiao Dong Si ◽  
Shi Bin Li

In view of the low pressure tight gas reservoir in Songnan block, the comprehensive experiment of in-situ stress is carried out. Firstly, the tuffaceous breccia of Longshen 301 and 307 has been cored and the flag line is depicted. Through the viscous remanence experiment, the secondary viscous remanence component at 0°C~200°C is gradually separated, and the average direction of the two groups core flag line are obtained, which are 92.0° and 114.7°. Then to mark the flag line as the baseline, using the wave velocity anisotropy experiment to measure the acoustic wave velocity under different phase angle, the minimum wave velocity phase angle of the two groups core are achieved, which are 23° and 44° . And combined with the direction of the flag line, the direction of maximum horizontal principal stress are determined for N69o E and N70.7o E. Finally, using DSA (differential strain) experiment, the strain recovery of 9 direction under hydrostatic pressure are measured, and the three principal strain, the magnitude and direction of the principal stress are obtained through the inversion, the maximum principal stress direction of which are N70.8o E and N71.7o E. Compared the wave velocity anisotropy experiments and DSA experimental results, both close, the direction of the regional maximum horizontal in-situ stress is determined for N70.5° E ± 1.5°. According to the above research results, the basis for the engineering design of Songnan block such as oil and gas exploration, development, drilling and production is provided.


Sign in / Sign up

Export Citation Format

Share Document