scholarly journals Aluminium Nanofluids Stability: A Comparison between the Conventional Two-Step Fabrication Approach and the Controlled Sonication Bath Temperature Method

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Naser Ali ◽  
Joao A. Teixeira ◽  
Abdulmajid Addali

This study investigates the shelving stability of dispersed aluminium nanoparticles in water mixtures fabricated by the conventional and the controlled bath temperature two-step methods. The nanofluids were prepared with water of pH 9 and nanoparticles of 0.1–1.0 vol.%. A bath type ultrasonicator was employed for dispersing the nanoparticles into the base fluid. The sonication process, for all as-prepared samples, lasted for 4 hours and was either device bath temperature uncontrolled or controlled in the range of 10–60°C. Furthermore, the stability of the as-produced nanosuspensions was evaluated using the sedimentation photograph capturing method by capturing images at equal intervals of time for 12 hours then analysing the data based on the sample sedimentation height ratios. It was found that the sedimentation behaviour of the nanofluids fabricated via the controlled temperatures of less than 30°C was of dispersed sedimentation type, while those produced by the conventional method and the fixed temperatures of 30°C and higher were of flocculated sedimentation type. In addition, increasing the controlled sonication temperature has shown to increase the settling process of the sediments. Moreover, the rise in nanoparticle concentration was seen to reduce the variation in sedimentation height ratio between the fixed temperature samples. A comparison between the two fabrication methods has shown that the 30°C nanofluids had better short- and long-term stability than the conventionally produced suspensions.

1979 ◽  
Vol 42 (04) ◽  
pp. 1135-1140 ◽  
Author(s):  
G I C Ingram

SummaryThe International Reference Preparation of human brain thromboplastin coded 67/40 has been thought to show evidence of instability. The evidence is discussed and is not thought to be strong; but it is suggested that it would be wise to replace 67/40 with a new preparation of human brain, both for this reason and because 67/40 is in a form (like Thrombotest) in which few workers seem to use human brain. A �plain� preparation would be more appropriate; and a freeze-dried sample of BCT is recommended as the successor preparation. The opportunity should be taken also to replace the corresponding ox and rabbit preparations. In the collaborative study which would be required it would then be desirable to test in parallel the three old and the three new preparations. The relative sensitivities of the old preparations could be compared with those found in earlier studies to obtain further evidence on the stability of 67/40; if stability were confirmed, the new preparations should be calibrated against it, but if not, the new human material should receive a calibration constant of 1.0 and the new ox and rabbit materials calibrated against that.The types of evidence available for monitoring the long-term stability of a thromboplastin are discussed.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 620
Author(s):  
Ioannis Kyriakou ◽  
Parastoo Mousavi ◽  
Jens Perch Nielsen ◽  
Michael Scholz

The fundamental interest of investors in econometric modeling for excess stock returns usually focuses either on short- or long-term predictions to individually reduce the investment risk. In this paper, we present a new and simple model that contemporaneously accounts for short- and long-term predictions. By combining the different horizons, we exploit the lower long-term variance to further reduce the short-term variance, which is susceptible to speculative exuberance. As a consequence, the long-term pension-saver avoids an over-conservative portfolio with implied potential upside reductions given their optimal risk appetite. Different combinations of short and long horizons as well as definitions of excess returns, for example, concerning the traditional short-term interest rate but also the inflation, are easily accommodated in our model.


1993 ◽  
Vol 98 (B3) ◽  
pp. 4619-4626 ◽  
Author(s):  
George Peter ◽  
Fred J. Klopping ◽  
Glenn S. Sasagawa ◽  
James E. Faller ◽  
Timothy M. Niebauer

2021 ◽  
Vol 15 (1) ◽  
pp. 2
Author(s):  
Cristina Martín-Sabroso ◽  
Mario Alonso-González ◽  
Ana Fernández-Carballido ◽  
Juan Aparicio-Blanco ◽  
Damián Córdoba-Díaz ◽  
...  

Accumulation of cystine crystals in the cornea of patients suffering from cystinosis is considered pathognomonic and can lead to severe ocular complications. Cysteamine eye drop compounded formulations, commonly prepared by hospital pharmacy services, are meant to diminish the build-up of corneal cystine crystals. The objective of this work was to analyze whether the shelf life proposed for six formulations prepared following different protocols used in hospital pharmacies is adequate to guarantee the quality and efficacy of cysteamine eye drops. The long-term and in-use stabilities of these preparations were studied using different parameters: content of cysteamine and its main degradation product cystamine; appearance, color and odor; pH and viscosity; and microbiological analysis. The results obtained show that degradation of cysteamine was between 20% and 50% after one month of storage in the long-term stability study and between 35% and 60% in the in-use study. These data confirm that cysteamine is a very unstable molecule in aqueous solution, the presence of oxygen being the main degradation factor. Saturation with nitrogen gas of the solutions offers a means of reducing cysteamine degradation. Overall, all the formulae studied presented high instability at the end of their shelf life, suggesting that their clinical efficacy might be dramatically compromised.


2013 ◽  
Vol 23 (11) ◽  
pp. 2129-2154 ◽  
Author(s):  
HÉLÈNE BARUCQ ◽  
JULIEN DIAZ ◽  
VÉRONIQUE DUPRAT

This work deals with the stability analysis of a one-parameter family of Absorbing Boundary Conditions (ABC) that have been derived for the acoustic wave equation. We tackle the problem of long-term stability of the wave field both at the continuous and the numerical levels. We first define a function of energy and show that it is decreasing in time. Its discrete form is also decreasing under a Courant–Friedrichs–Lewy (CFL) condition that does not depend on the ABC. Moreover, the decay rate of the continuous energy can be determined: it is exponential if the computational domain is star-shaped and this property can be illustrated numerically.


2021 ◽  
pp. 1-27
Author(s):  
Yichen Bao ◽  
Kai Liu ◽  
Quan Zheng ◽  
Lulu Yao ◽  
Yufu Xu

Abstract Pickering emulsion is a new type of stable emulsion made by ultra-fine solid particles instead of traditional surfactants as stabilizers, which has received widespread attention in recent years. The preparation methods of stator-rotor homogenization, high-pressure homogenization, and ultrasonic emulsification were compared with others in this work. The main factors affecting the stability of Pickering emulsion are the surface humidity of the solid particles, the polarity of the oil phase, and the oil-water ratio. These factors could affect the nature of the solid particles, the preparation process of Pickering emulsion and the external environment. Consequently, the long-term stability of Pickering emulsion is still a challenge. The tribological investigations of Pickering emulsion were summarized, and the multifunctional Pickering emulsion shows superior prospects for tribological applications. Moreover, the latest development of Pickering emulsion offers a new strategy for smart lubrication in the near future.


2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000371-000376 ◽  
Author(s):  
Marina Santo Zarnik ◽  
Darko Belavic

This paper discusses the stability of a piezoresistive, LTCC-based, pressure sensor that was designed for measurements in a low-pressure range below 100 mbar. The intrinsic stability of the sensor's offset was evaluated at a constant ambient temperature and different conditions regarding the atmospheric humidity. The sensors were also subjected to functional fatigue tests, which included a full-scale and an overload pressure cycling. The results of the fatigue testing revealed the vulnerability of the sensor's structure from the point of view of the long-term stability and the life-cycle. Nevertheless, the stability of the key characteristics of the prototype sensors was found to be satisfactory for accurate measurements in the low-pressure ranges.


1995 ◽  
Vol 377 ◽  
Author(s):  
Mohan K. Bhan

ABSTRACTWe have systematically investigated the effects of addition of sub-ppm levels of boron on the stability of a-Si:H films and p-i-n devices, deposited by PE-CVD technique. The films thus produced with appropriate amounts of boron, show a significant improvement in stability, when soaked under both AM 1.5 (short-term) as well as 10×sun (long-term) illumination conditions. The opto-electronic properties of the films are quite respectable It is concluded that boron compensates the native impurities by forming donor-acceptor pairs, which reduces the “fast” defects and hence the initial degradation of the films. It is also speculated that boron may also be improving the short-term stability, by reducing the recombination of light generated electrons and holes, by converting D° into D+ states. The long-term stability appears to get affected by hydrogen dilution which seems to reduce the amount of “slow” defects. As a result of B doping of i-layer, the initial conversion efficiency of the devices decreases. It is presumed that our devices may contain an enhanced level of boron impurity, than expected, making them as worse material and to degrade less.


Sign in / Sign up

Export Citation Format

Share Document