scholarly journals Analysis of the Effect of the Line-Seru Conversion on the Waiting Time with Batch Arrival

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Hui Ren ◽  
Dongyu Wang

The conveyor assembly line has been widely used in manufacturing industries to produce standard products with low costs. However, due to lack of flexibility, this production method has not been conducive to multivariety and small-batch production. In this situation, seru production formed by converting conveyor assembly lines has been a successful innovation in the Japanese manufacturing industry. Most of the existing literature has studied the benefits of this line-seru conversion from the perspective of the enterprises themselves, but this paper studies the effect of the line-seru conversion on the waiting time from the perspective of the customer. First, the change in the average waiting queue length caused by the line-seru conversion is proposed as an evaluation index. Second, with the consideration of the practical situation of random batch arrivals, the average waiting queue length formulas for the conveyor assembly line and seru production are established based on the assumption that the arrival is a Poisson process. Then, under two scenarios, we investigate the relationship between the average waiting queue length changed by the line-seru conversion and other parameters and find that the conversion can reduce the average waiting queue length in multivariety and small-batch production. Finally, under other potential scenarios, the equations for determining the average waiting queue length resulting from a change to line-seru conversion are derived.

2020 ◽  
Vol 9 (1) ◽  
pp. 63
Author(s):  
Joshua Patterson ◽  
Andrzej Korzeniowski

We use the stationary distribution for the M/M/1 with Unreliable Service and aWorking Vacation (M/M/1/US/WV) given explicitly in (Patterson & Korzeniowski, 2019) to find a decomposition of the stationary queue length N. By applying the distributional form of Little's Law the Laplace-tieltjes Transform of the stationary customer waiting time W is derived. The closed form of the expected value and variance for both N and W is found and the relationship of the expected stationary waiting time as a function of the service failure rate is determined.


2018 ◽  
Vol 218 ◽  
pp. 04028
Author(s):  
Inaki Maulida Hakim ◽  
Syarafi Auzan Mu’min ◽  
Rolina Oktapiani Zaqiah

In this modern era, the competition among the manufacturing industry, especially in the automotive sector will become increasingly tight which causes companies need to innovate so that satisfaction of the consumer can be maintained. The production process will be an important aspect in the automotive industry to maintain the quality of products and ensure consumer demand can be fulfilled. The problems that often occur in the production process is in the form of production flow constraints caused by workload unbalanced in the assembly lines. The imbalance causes the assembly lines do not run in a cycle time that is determined, so that consumer demand can not be meet in the right amount and companies need to spend more to mitigate them. Therefore, this study was conducted to balance workload on the assembly line by using line balancing form Ranked Positional Weight (RPW) with a subsequent increase in the efficiency and productivity of assembly line that affect production process runs without any contraints.


With the development of technology, augmented reality (AR) devices were introduced in many areas. One of these devices, AR glasses, is more convenient and easy to fulfil and still continuing to evolve. The AR glasses, which are frequently used in sectors such as education, entertainment, construction and automotive, bring many research areas. In this article, the cognitive load that AR glasses bring to the users who is working on an assembly line has been investigated. Cognitive load refers to the resources used by working memory in the brain. This study was carried out with healthy participants in the assembly line of an automotive manufacturing factory and 60 tests were performed for measurement. Effect of the AR glasses for participants under 35 and over 35 years of age was measured by electroencephalography (EEG). EEG is a common objective technique used in cognitive load measurements. EEG data collected were examined and no significant difference was observed between participants of under and over 35 years of age. When compared with the data obtained in the experiments without glasses, it was seen that the use of the AR glasses in assembly lines of automotive manufacturing factories did not create an additional cognitive load. It can be seen from the article that AR glasses did not have an age-related effect and can be use in the automotive manufacturing industry


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Qidong Yin ◽  
Xiaochuan Luo ◽  
Julien Hohenstein

Two-sided assembly lines are widely used in the large-size product manufacturing industry, especially for automotive assembly production. Balancing the assembly line is significant for assembly process planning and assembly production. In this study, we develop a novel and exact method to optimize the two-sided assembly line balancing problem with zoning constraints (TALBz), in which the aim is to minimize the number of mated-stations considering the task restrictions. A mixed-integer programming model is employed to exactly describe the TALBz problem. To strengthen the computational efficiency, we apply Dantzig–Wolfe decomposition to reformulate the TALBz problem. We further propose a branch-and-price (B&P) algorithm that integrates the column generation approach into a branch-and-bound frame. Both the benchmark datasets with zoning constraints and without zoning constraints are tested to evaluate the performance of the B&P algorithm. The numerical results show that our proposed approach can obtain optimal solutions efficiently on most cases. In addition, experiments on the real-world datasets originating from passenger vehicle assembly lines are conducted. The proposed B&P algorithm shows its advantage in tackling practical problems with the task restrictions. This developed methodology therefore provides insight for solving large-scale TALBz problems in practice.


2021 ◽  
Vol 13 (11) ◽  
pp. 5771
Author(s):  
Piero Lovreglio ◽  
Angela Stufano ◽  
Francesco Cagnazzo ◽  
Nicola Bartolomeo ◽  
Ivo Iavicoli

The COVID-19 incidence in 61 manufacturing plants in Europe (EU), North America (NA) and Latin-America (LATAM) was compared with the incidence observed in the countries where the plants are located in order to evaluate the application of an innovative model for COVID-19 risk management. Firstly, a network of local and global teams was created, including an external university occupational physician team for scientific support. In July 2020, global prevention guidelines for the homogenous management of the pandemic were applied, replacing different site or regional procedures. A tool for COVID-19 monitoring was implemented to investigate the relationship between the incidence rates inside and outside the plants. In the period of May–November 2020, 565 confirmed cases (EU 330, NA 141, LATAM 94) were observed among 20,646 workers with different jobs and tasks, and in the last two months 85% EU and 70% NA cases were recorded. Only in 10% of cases was a possible internal origin of the contagion not excluded. In the EU and NA, unlike LATAM, the COVID-19 incidence rates inside the sites punctually followed the rising trend outside. In conclusion, the model, combining a global approach with the local application of the measures, maintains the sustainability in the manufacturing industry.


Author(s):  
Victor Ei-Wen Lo ◽  
Yi-Chen Chiu ◽  
Hsin-Hung Tu

Background: There are different types of hand motions in people’s daily lives and working environments. However, testing duration increases as the types of hand motions increase to build a normative database. Long testing duration decreases the motivation of study participants. The purpose of this study is to propose models to predict pinch and press strength using grip strength. Methods: One hundred ninety-eight healthy volunteers were recruited from the manufacturing industries in Central Taiwan. The five types of hand motions were grip, lateral pinch, palmar pinch, thumb press, and ball of thumb press. Stepwise multiple linear regression was used to explore the relationship between force type, gender, height, weight, age, and muscle strength. Results: The prediction models developed according to the variable of the strength of the opposite hand are good for explaining variance (76.9–93.1%). Gender is the key demographic variable in the predicting models. Grip strength is not a good predictor of palmar pinch (adjusted-R2: 0.572–0.609), nor of thumb press and ball of thumb (adjusted-R2: 0.279–0.443). Conclusions: We recommend measuring the palmar pinch and ball of thumb strength and using them to predict the other two hand motions for convenience and time saving.


1973 ◽  
Vol 5 (01) ◽  
pp. 153-169 ◽  
Author(s):  
J. H. A. De Smit

Pollaczek's theory for the many server queue is generalized and extended. Pollaczek (1961) found the distribution of the actual waiting times in the model G/G/s as a solution of a set of integral equations. We give a somewhat more general set of integral equations from which the joint distribution of the actual waiting time and some other random variables may be found. With this joint distribution we can obtain distributions of a number of characteristic quantities, such as the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. For a wide class of many server queues the formal expressions may lead to explicit results.


2014 ◽  
Vol 971-973 ◽  
pp. 646-649
Author(s):  
Qing Song Zhao

The structural framework for the car’s assembly line simulation training system of the SWET(Simulated Work Environment Training) is designed overall, including two automatic car assembly lines and two manually run the disassembly line. The automatic control system of the car’s assembly line simulation training system is designed with the knowledge of electrical and electronic, SCM principles, counts the number of the car, automatically pause and open the line with alarm and automatic recovery control.


2000 ◽  
Author(s):  
S. Jack Hu ◽  
Yufeng Long ◽  
Jaime Camelio

Abstract Assembly processes for compliant non-rigid parts are widely used in manufacturing automobiles, furniture, and electronic appliances. One of the major issues in the sheet metal assembly process is to control the dimensional variation of assemblies throughout the assembly line. This paper provides an overview of the recent development in variation analysis for compliant assembly. First, the unique characteristics of compliant assemblies are discussed. Then, various approaches to variation modeling for compliant assemblies are presented for single station and multi-station assembly lines. Finally, examples are given to demonstrate the applications of compliant assembly variation models.


Sign in / Sign up

Export Citation Format

Share Document