scholarly journals Digital Noninterleaved High-Power Totem Pole PFC Based on Internal Model Design

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Fei Gao ◽  
Rongfei Xia ◽  
Yifei Chen ◽  
Yongjian Feng

When the control signal u(t) of totem pole PFC with GaN HEMTs is a function of measurable state variables, the state feedback gain matrix can be determined by applying state variable feedback control with Ackerman formula, so that the poles of closed-loop system can be allocated to the desired position. This correction method is especially beneficial to optimal system control according to performance requirements. By introducing the internal model of reference input, a state space function including the first-order and second-order differential of error is constructed; this novel controller makes controlled system track the reference input signal progressively with zero steady-state error. A 4 kW PFC prototype is designed to verify this design method.

1990 ◽  
Vol 112 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Kiyotaka Shimizu ◽  
Masakazu Suzuki ◽  
Misao Kato

This paper is concerned with a design method for optimizing dynamic compensators of Pearson’s type. Optimal parameter matrices are obtained by use of a parameter matching technique and an arbitrary pole placement technique. The controlled system has the optimal LQ modes and the modes with arbitrarily quick damping. The presented compensator works as the optimal regulator with observer and performs about the same control as the optimal regulator. And it is designed not in two steps; observer, regulator, but in one step; optimization of output feedback gain without considering any state estimation.


Author(s):  
Zhen Zhang ◽  
Zongxuan Sun ◽  
Peiqing Ye

In this paper, we extend previous results for a novel internal model-based tracking control with a class of known LTV plant models driven by LTI exosystems to uncertain LTI plant models driven by LTV exosystems. The augmented time-varying system to be stabilized becomes uncertain. Moreover, the time-varying fashion under consideration renders the augmented uncertain system linear parameter-varying (LPV). By means of an output-feedback gain-scheduling design, the augmented uncertain LTV system is stabilized. Simulation results illustrate the proposed design method.


Author(s):  
Min-Guk Seo ◽  
Chang-Hun Lee ◽  
Tae-Hun Kim

A new design method for trajectory shaping guidance laws with the impact angle constraint is proposed in this study. The basic idea is that the multiplier introduced to combine the equations for the terminal constraints is used to shape a flight trajectory as desired. To this end, the general form of impact angle control guidance (IACG) is first derived as a function of an arbitrary constraint-combining multiplier using the optimal control. We reveal that the constraint-combining multiplier satisfying the kinematics can be expressed as a function of state variables. From this result, the constraint-combining multiplier to achieve a desired trajectory can be obtained. Accordingly, when the desired trajectory is designed to satisfy the terminal constraints, the proposed method directly can provide a closed form of IACG laws that can achieve the desired trajectory. The potential significance of the proposed result is that various trajectory shaping IACG laws that can cope with various guidance goals can be readily determined compared to existing approaches. In this study, several examples are shown to validate the proposed method. The results also indicate that previous IACG laws belong to the subset of the proposed result. Finally, the characteristics of the proposed guidance laws are analyzed through numerical simulations.


Author(s):  
Eming Chen

Abstract In the flexible robot force control situations, if there exists a discontinuity between the robot tip sensor and the work-piece, the robot contact process becomes a nonlinear system control problem. The control tasks require the robot hand to switch from free motion control to contact motion control. The inevitable high impact force tends to let the system become unstable. The purpose of this paper is to investigate the control of the manipulator during this process. In this paper, dynamic models of the flexible link manipulator in both non-contacted and contacted modes are first derived. Due to the fact that the arm vibration shape functions are changed between the two modes, a transform matrix will be used to transform the controlled state variables, such as generalized position and velocity. A nonlinear sliding mode control technique has been implemented in an attempt to extinguish the chatter phenomenon and settle quickly to the desired setpoint.


2020 ◽  
Vol 26 (23-24) ◽  
pp. 2329-2339
Author(s):  
Randa Herzallah ◽  
Yuyang Zhou

This article proposes the exploitation of the Kullback–Leibler divergence to characterise the uncertainty of the tracking error for general stochastic systems without constraints of certain distributions. The general solution to the fully probabilistic design of the tracking error control problem is first stated. Further development then focuses on the derivation of a randomised controller for a class of linear stochastic Gaussian systems that are affected by multiplicative noise. The derived control solution takes the multiplicative noise of the controlled system into consideration in the derivation of the randomised controller. The proposed fully probabilistic design of the tracking error of the system dynamics is a more legitimate approach than the conventional fully probabilistic design method. It directly characterises the main objective of system control. The efficiency of the proposed method is then demonstrated on a flexible beam example where the vibration quenching in flexible beams is shown to be effectively suppressed.


Author(s):  
Cameron L. Mock ◽  
Zachary T. Hamilton ◽  
Dustin Carruthers ◽  
John F. O’Brien

Measures to reduce control performance for greater robustness (e.g. reduced bandwidth, shallow loop roll-off) must be enhanced if the plant or actuators are known to have nonlinear characteristics that cause variations in loop transmission. Common causes of these nonlinear behaviors are actuator saturation and friction/stiction in the moving parts of mechanical systems. Systems with these characteristics that also have stringent closed loop performance requirements present the control designer with an extremely challenging problem. A design method for these systems is presented that combines very aggressive Nyquist-stable linear control to provide large negative feedback with nonlinear feedback to compensate for the effects of multiple nonlinearities in the loop that threaten stability and performance. The efficacy of this approach is experimentally verified on a parallel kinematic mechanism with multiple uncertain nonlinearities used for vibration suppression.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 196 ◽  
Author(s):  
Shiquan Zhao ◽  
Sheng Liu ◽  
Robain De Keyser ◽  
Clara-Mihaela Ionescu

In large scale ships, the most used controllers for the steam/water loop are still the proportional-integral-derivative (PID) controllers. However, the tuning rules for the PID parameters are based on empirical knowledge and the performance for the loops is not satisfying. In order to improve the control performance of the steam/water loop, the application of a recently developed PID autotuning method is studied. Firstly, a ‘forbidden region’ on the Nyquist plane can be obtained based on user-defined performance requirements such as robustness or gain margin and phase margin. Secondly, the dynamic of the system can be obtained with a sine test around the operation point. Finally, the PID controller’s parameters can be obtained by locating the frequency response of the controlled system at the edge of the ‘forbidden region’. To verify the effectiveness of the new PID autotuning method, comparisons are presented with other PID autotuning methods, as well as the model predictive control. The results show the superiority of the new PID autotuning method.


Author(s):  
Antranik A. Siranosian ◽  
Miroslav Krstic ◽  
Andrey Smyshlyaev ◽  
Matt Bement

We present a control design method for nonlinear partial differential equations (PDEs) based on a combination of gain scheduling and backstepping theory for linear PDEs. A benchmark first-order hyperbolic system with a destabilizing in-domain nonlinearity is considered first. For this system a nonlinear feedback law based on gain scheduling is derived explicitly, and a statement of stability is presented for the closed-loop system. Control designs are then presented for a string and shear beam PDE, both with Kelvin-Voigt damping and potentially destabilizing free-end nonlinearities. String and beam simulation results illustrate the merits of the gain scheduling approach over the linearization-based design.


Sign in / Sign up

Export Citation Format

Share Document