A Design Procedure for Asymptotically Optimal Dynamic Compensators

1990 ◽  
Vol 112 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Kiyotaka Shimizu ◽  
Masakazu Suzuki ◽  
Misao Kato

This paper is concerned with a design method for optimizing dynamic compensators of Pearson’s type. Optimal parameter matrices are obtained by use of a parameter matching technique and an arbitrary pole placement technique. The controlled system has the optimal LQ modes and the modes with arbitrarily quick damping. The presented compensator works as the optimal regulator with observer and performs about the same control as the optimal regulator. And it is designed not in two steps; observer, regulator, but in one step; optimization of output feedback gain without considering any state estimation.

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Fei Gao ◽  
Rongfei Xia ◽  
Yifei Chen ◽  
Yongjian Feng

When the control signal u(t) of totem pole PFC with GaN HEMTs is a function of measurable state variables, the state feedback gain matrix can be determined by applying state variable feedback control with Ackerman formula, so that the poles of closed-loop system can be allocated to the desired position. This correction method is especially beneficial to optimal system control according to performance requirements. By introducing the internal model of reference input, a state space function including the first-order and second-order differential of error is constructed; this novel controller makes controlled system track the reference input signal progressively with zero steady-state error. A 4 kW PFC prototype is designed to verify this design method.


1996 ◽  
Vol 06 (07) ◽  
pp. 1341-1349 ◽  
Author(s):  
GUANRONG CHEN ◽  
DEJIAN LAI

A simple, yet mathematically rigorous feedback control design method is proposed in this paper, which can make all the Lyapunov exponents of the controlled system strictly positive, for any given n-dimensional dynamical system that could be originally nonchaotic or even asymptotically stable. The argument used is purely algebraic and the design procedure is completely schematic, with no approximations used throughout the derivation. This is a rigorous and convenient technique suggested as an attempt for anticontrol of chaotic dynamical systems, with explicit computational formulas derived for applications.


2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


1991 ◽  
Vol 113 (3) ◽  
pp. 420-421 ◽  
Author(s):  
C. Minas ◽  
D. J. Inman

An output feedback method is developed, that systematically places a desired number of poles of a closed-loop system at or near desired locations. The system is transformed to its equivalent controllable canonical form, where the output feedback gain matrix is calculated in a weighted least squares scheme, that minimizes the change of the remaining modes of the system. The advantage of this method over other pole placement routines is the fact that the influence on the remaining unplaced modes of the system is minimum, which is particularly important in preserving closed-loop stability.


2007 ◽  
Vol 31 (2) ◽  
pp. 167-190 ◽  
Author(s):  
Zhang Ying ◽  
Yao Yan-An ◽  
Cha Jian-Zhong

This paper proposed a novel concept of active balancer for dynamic balancing of planar mechanisms. Somewhat similar to a vibration absorber, the active balancer is designed as an independent device, which is placed outside of the mechanism to be balanced and can be installed easily. It consists of a two degree-of-freedom (DOF) linkage with two input shafts, one of which is connected to the output shaft of the mechanism to be balanced by a joint coupling, and the other one is driven by a controllable motor. Flexible dynamic balancing adapted to different working conditions can be achieved by varying speed trajectories of the control motor actively. A design method is developed for selecting suitable speed trajectories and link parameters of the two DOF linkage of the balancer to meet various design requirements and constraints. Numerical examples are given to demonstrate the design procedure and to verify the feasibility of the proposed concept.


ISRN Optics ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Suyong Wu ◽  
Xingwu Long ◽  
Kaiyong Yang

We present a novel fast robust design method of multilayer optical coatings. The sensitivity of optical films to production errors is controlled in the whole optimization design procedure. We derive an analytical calculation model for fast robust design of multilayer optical coatings. We demonstrate its effectiveness by successful application of the robust design method to a neutral beam splitter. It is showed that the novel robust design method owns an inherent fast computation characteristic and the designed film is insensitive to the monitoring thickness errors in deposition process. This method is especially of practical significance to improve the mass production yields and repetitive production of high-quality optical coatings.


Author(s):  
Tsunehiro Wakasugi ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper deals with a new system design method for motion and vibration control of a three-dimensional flexible shaking table. An integrated modeling and controller design procedure for flexible shaking table system is presented. An experimental three-dimensional shaking table is built. “Reduced-Order Physical Model” procedure is adopted. A state equation system model is composed and a feedback controller is designed by applying LQI control law to achieve simultaneous motion and vibration control. Adding a feedforward, two-degree-of-freedom control system is designed. Computer simulations and control experiments are carried out and the effectiveness of the presented procedure is investigated. The robustness of the system is also investigated.


1990 ◽  
Author(s):  
A. Kirschner ◽  
H. Stoff

A cascade design-method is presented which complements the meridional through-flow design procedure of turbomachines. Starting from an axisymmetric flow field and the streamline geometry in the meridional plane this simple method produces a solution for the quasi three-dimensional flow field and the blade-element geometry on corresponding stream surfaces. In addition, it provides intra-blade data on loss and turning required for a consistent design and a convenient means of optimizing blade loading. The purpose of this paper is to describe the theoretical basis of the method and to illustrate its application in the design of transonic compressors.


2011 ◽  
Vol 62 (2) ◽  
pp. 99-103
Author(s):  
Vojtech Veselý

Stable Model Predictive Control Design: Sequential Approach The paper addresses the problem of output feedback stable model predictive control design with guaranteed cost. The proposed design method pursues the idea of sequential design for N prediction horizon using one-step ahead model predictive control design approach. Numerical examples are given to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document