scholarly journals Stability Analysis and Monitoring Method for the Key Block Structure of the Basic Roof of Noncoal Pillar Mining with Automatically Formed Gob-Side Entry

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jianning Liu ◽  
Manchao He ◽  
Yajun Wang ◽  
Ruifeng Huang ◽  
Jun Yang ◽  
...  

The key block of the basic roof is the main contributor to the structural stability of a roadway. Research on the stability of the key block structure is of great significance for the promotion of noncoal pillar mining with automatically formed gob-side entry (GEFANM) technology. This paper is set in the engineering context of the GEFANM experiment at the Ningtiaota Coal Mine. The study fully considered the differences in the gob roof caving on the roof-cutting-line side, and the range of rotation angles to maintain a stable key block was determined. Based on this range of rotation angles, the range of safe bulking coefficients of gangue was calculated. The bulking coefficient of the gangue on the gravel side of the roadway was used as the metric in a new monitoring method and in the calculation of the field parameters. The range of safe bulking coefficients was determined to be 1.40–1.37. Field monitoring was conducted to obtain the gangue bulking coefficient on the gravel side. Combining the roof and floor convergence data, when the bulking coefficient fell within the safe range, the convergence was 95–113 mm. In this stage, the key block structure was stable. When the gangue bulking coefficient fell outside the safe range, the convergence was larger, and cracks were observed. The key block may be vulnerable to instability. The results affirmed that the gangue bulking coefficient can be used as a monitoring metric to study the stability of key block structures.

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 628 ◽  
Author(s):  
Junwen Zhang

Split-level longwall gob-side entry (SLGE) has been applied as a special form of small gate pillar mining (or non-coal pillar mining) in thick coal seams. The stability of the coal pillar directly affects the rationality of the layout of the SLGE. Starting from the mining-induced influence around the SLGE, this paper compares the mechanical properties of coal under different mining effects, and studies the rationality of “zero pillar” location against the Xiegou coal mine. The study shows that the key to success of the application of the SLGE is the existence of an intact zone within the triangular coal pillar in spite of double disturbances due to tunneling and coal mining extraction. Laboratory testing shows that the density and uniaxial compressive strength of rock specimens obtained from the triangular coal pillar are smaller than that from the other part of the panel which is concluded to be due to the varied degree of mining-induced influence. The numerical modeling results show that most of the triangular coal pillar is intact after extraction of the panel, and that the peak stress is located in the solid coal beyond the triangular coal pillar. The plastic zone of the triangular coal pillar is only about 1 m after the excavation of the tail gate of the next split-level panel. The physical modeling shows that the tail gate of the next panel is in the destressed zone with only a very small stress fluctuation during the extraction of the next panel. The study shows that the location of the SLGE at Xiegou coal mine is reasonable. SLGE is preferable for ultra-thick coal seams.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bing-Jun Sun ◽  
Xin-Zhu Hua ◽  
Yan Zhang ◽  
Jiadi Yin ◽  
Kai He ◽  
...  

The mechanical model of the basic roof fracture structure is established on the basis of key block theory to study the roof breaking mechanism of gob-side entry retaining under roof cutting and pressure relief, and the analytical formula of roof support resistance is derived when the key block of the basic roof is stable. The influence of roof cutting angle and cutting height on roof support resistance is also analyzed. Determining the cutting seam parameters of the retained roadway roof is necessary to identify the support resistance of the roadway roof due to the correlation between the roof cutting parameters and the support resistance. Taking the II 632 haulage drift of the Hengyuan coal mine as the engineering background, FLAC3D numerical simulation is used in this paper to analyze the influence of different roof cutting angles and cutting heights on the surrounding rock structure evolution of retained roadways. Results show that the roof cutting angle and cutting height respond to the support resistance of the retained roadway roof, and the support resistance required by the roof increases with the roof cutting angle and cutting height. This condition ensures that the side roof of the gob can be cut off smoothly, and the support resistance required by the roof of retained roadways is within a reasonable range. Through theoretical and numerical simulation analysis, the reasonable roof cutting height of II 632 haulage drift is 8 m and the roof cutting angle is 15°. The theoretical analysis and numerical simulation results reveal that the required support resistance to maintain the stability of the roadway roof is 0.38 MPa. The supporting scheme of the roof of the II 632 haulage drift in the Hengyuan coal mine is then designed. Finally, the field industrial test is used for verification. The borehole imaging results show that the overall line of the retained roadway roof is small based on the description of field monitoring results. The deformation of the surrounding rock surface of the retained roadway is less than 100 mm, and the roadway is 40 m from the lagging working face. The deformation rate of surrounding rock decreases with the increase in distance from the working face. The integrity of the retained roadway roof is good, and the deformation of the surrounding rock is effectively controlled.


2013 ◽  
Vol 446-447 ◽  
pp. 1113-1117 ◽  
Author(s):  
Hong Biao Wang ◽  
Chao An ◽  
Shan Dong Zhang

For mine mining, In-situ stress is the fundamental force that causes the deformation and failure of surrounding rock in the mining engineering and supporting, and produces mine dynamic phenomena. Among many factors which affecting the stability of mining engineering, In-situ stress is the main and one of the most fundamental factors. According to the In-situ stress monitoring method some coal mine adopted, this paper introduces the concrete principle and working process.


2012 ◽  
Vol 204-208 ◽  
pp. 3526-3531 ◽  
Author(s):  
Xin Tao Zhao ◽  
Xin Chun Gao ◽  
Dong Sheng Li

Coal mine waste dump often occur landslide and collapse disasters, the prevention measures and stability analysis of the waste dump must be studied.Firstly,the major factors that can cause landslide in Nantong coal mine waste dump,Chongqing were analyzed,secondly,the stability of four geological cross sections were analyzed by the limiting equilibrium method and FLAC numerical simulation method,the conclusions from two methods are same,and the conclusion is the safety factors of cross sections A and C are smallest and landslide and debris flow disasters will occur easily when face with a long heavy rainfall.thirdly, according to the main factors that can cause waste dump landslide easily and combine with the analysis results of limit equilibrium method and discrete element numerical simulation seven prevention measures were proposed, these measures can provide references for similar waste dump.


2019 ◽  
Vol 1 (1) ◽  
pp. 49-60
Author(s):  
Simon Heru Prassetyo ◽  
Ganda Marihot Simangunsong ◽  
Ridho Kresna Wattimena ◽  
Made Astawa Rai ◽  
Irwandy Arif ◽  
...  

This paper focuses on the stability analysis of the Nanjung Water Diversion Twin Tunnels using convergence measurement. The Nanjung Tunnel is horseshoe-shaped in cross-section, 10.2 m x 9.2 m in dimension, and 230 m in length. The location of the tunnel is in Curug Jompong, Margaasih Subdistrict, Bandung. Convergence monitoring was done for 144 days between February 18 and July 11, 2019. The results of the convergence measurement were recorded and plotted into the curves of convergence vs. day and convergence vs. distance from tunnel face. From these plots, the continuity of the convergence and the convergence rate in the tunnel roof and wall were then analyzed. The convergence rates from each tunnel were also compared to empirical values to determine the level of tunnel stability. In general, the trend of convergence rate shows that the Nanjung Tunnel is stable without any indication of instability. Although there was a spike in the convergence rate at several STA in the measured span, that spike was not replicated by the convergence rate in the other measured spans and it was not continuous. The stability of the Nanjung Tunnel is also confirmed from the critical strain analysis, in which most of the STA measured have strain magnitudes located below the critical strain line and are less than 1%.


Sign in / Sign up

Export Citation Format

Share Document