scholarly journals HDAC and HMT Inhibitors in Combination with Conventional Therapy: A Novel Treatment Option for Acute Promyelocytic Leukemia

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Aida Vitkevičienė ◽  
Giedrė Skiauterytė ◽  
Andrius Žučenka ◽  
Mindaugas Stoškus ◽  
Eglė Gineikienė ◽  
...  

Acute promyelocytic leukemia (APL) is characterized by PML-RARA translocation, which causes the blockage of promyelocyte differentiation. Conventional treatment with Retinoic acid and chemotherapeutics is quite satisfactory. However, there are still patients who relapse or develop resistance to conventional treatment. To propose new possibilities for acute leukemia treatment, we studied the potential of histone deacetylase (HDAC) inhibitor and histone methyl transferase (HMT) inhibitor to enhance conventional therapy in vitro and ex vivo. NB4 and HL60 cell lines were used as an in vitro model; APL patient bone marrow mononuclear cells were used as an ex vivo model. Cell samples were treated with Belinostat (HDAC inhibitor) and 3-Deazaneplanocin A (HMT inhibitor) in combination with conventional treatment (Retinoic acid and Idarubicin). We demonstrated that the combined treatment used in the study had slightly higher effect on cell proliferation inhibition than conventional treatment. Also, enhanced treatment showed stronger effect on induction of apoptosis and on suppression of metabolism. Moreover, the treatment accelerated granulocytic cell differentiation and caused chromatin remodelling (increased H3K14 and H4 acetylation levels). In vitro and ex vivo models showed similar response to the treatment with different combinations of 3-Deazaneplanocin A, Belinostat, Retinoic acid, and Idarubicin. In conclusion, we suggest that 3-Deazaneplanocin A and Belinostat enhanced conventional acute promyelocytic leukemia treatment and could be considered for further investigations for clinical use.

Oncotarget ◽  
2016 ◽  
Vol 7 (29) ◽  
pp. 46028-46041 ◽  
Author(s):  
Farzaneh Atashrazm ◽  
Ray M. Lowenthal ◽  
Joanne L. Dickinson ◽  
Adele F. Holloway ◽  
Gregory M. Woods

Blood ◽  
1995 ◽  
Vol 86 (4) ◽  
pp. 1540-1547 ◽  
Author(s):  
RE Gallagher ◽  
YP Li ◽  
S Rao ◽  
E Paietta ◽  
J Andersen ◽  
...  

Of 113 acute promyelocytic leukemia cases documented to have diagnostic PML-RAR alpha hybrid mRNA, 10 cases (8.8%) had fusion sites in PML gene exon 6 (V-forms) rather than in the two common hybrid mRNA configurations resulting from breaksites in either PML gene intron 6 (L- forms) or intron 3 (S-forms). In 4 V-form cases, a common break/fusion site was discovered at PML gene nucleotide (nt) 1685, abutting a 3′ cryptic splice donor sequence. The fusion site was proximal to the common site in 1 case and more distal in 5 cases. The open reading frame encoding a PML-RAR alpha gene was consistently preserved, either by an in-frame fusion site or by the insertion of 3 to 127 unidentified nts. In 2 V-form cases, hybridization analysis of the reverse transcriptase-polymerase chain reaction products with a PML-RAR alpha juction probe was required for discrimination from L-form cases. Two V- form subgroups were defined by in vitro sensitivity to all-trans retinoic acid (tRA)-induced differentiation: 4 of 4 cases tested with fusion sites at or 5′ to nt 1685 (subgroup E6S) had reduced sensitivity (EC50 > or = 10(-7) mol/L), whereas 4 of 4 cases with fusion sites at or 3′ to nt 1709 (subgroup E6L) had high sensitivity (EC50 < 10(-8) mol/L) indistinguishable from that of L-form and S-form cases. These results provide the first link between PML-RAR alpha configuration and tRA sensitivity in vitro and support the importance of subclassifying APL cases according to PML-RAR alpha transcript type.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2175-2181 ◽  
Author(s):  
L Delva ◽  
M Cornic ◽  
N Balitrand ◽  
F Guidez ◽  
JM Miclea ◽  
...  

Abstract All-trans retinoic acid (ATRA) induces leukemic cell differentiation and complete remission (CR) in a high proportion of patients with acute promyelocytic leukemia (AML3 subtype). However, relapses occur when ATRA is prescribed as maintenance therapy, and resistance to a second ATRA-induction therapy is frequently observed. An induced hypercatabolism of ATRA has been suggested as a possible mechanism leading to reduced ATRA sensitivity and resistance. CRABPII, an RA cytoplasmic binding protein linked to RA's metabolization pathway, is induced by ATRA in different cell systems. To investigate whether specific features of the AML3 cells at relapse could explain the in vivo resistance observed, we studied the CRABP levels and in vitro sensitivity to ATRA of AML3 cells before and at relapse from ATRA. Relapse-AML3 cells (n = 12) showed reduced differentiation induction when compared with “virgin”-AML3 cells (n = 31; P < .05). Dose-response studies were performed in 2 cases at relapse and showed decreased sensitivity to low ATRA concentrations. CRABPII levels and in vitro differentiation characteristics of AML3 cells before and at relapse from ATRA therapy were studied concomittantly in 4 patients. High levels of CRABPII (median, 20 fmol/mg of protein) were detected in the cells of the 4 patients at relapse but were not detected before ATRA therapy. Three of these patients showed a decrease in differentiation induction of their leukemic cells, and a failure to achieve CR with a second induction therapy of ATRA 45 mg/m2/day was noted in all patients treated (n = 3). Results from this study provide evidence to support the hypothesis of induced-ATRA metabolism as one of the major mechanisms responsible for ATRA resistance. Monitoring CRABPII levels after ATRA withdrawal may help to determine when to administer ATRA in the maintenance or relapse therapy of AML3 patients.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4282-4289 ◽  
Author(s):  
Wenlin Shao ◽  
Laura Benedetti ◽  
William W. Lamph ◽  
Clara Nervi ◽  
Wilson H. Miller

Abstract The unique t(15; 17) of acute promyelocytic leukemia (APL) fuses the PML gene with the retinoic acid receptor α (RARα) gene. Although retinoic acid (RA) inhibits cell growth and induces differentiation in human APL cells, resistance to RA develops both in vitro and in patients. We have developed RA-resistant subclones of the human APL cell line, NB4, whose nuclear extracts display altered RA binding. In the RA-resistant subclone, R4, we find an absence of ligand binding of PML-RARα associated with a point mutation changing a leucine to proline in the ligand-binding domain of the fusion PML-RARα protein. In contrast to mutations in RARα found in retinoid-resistant HL60 cells, in this NB4 subclone, the coexpressed RARα remains wild-type. In vitro expression of a cloned PML-RARα with the observed mutation in R4 confirms that this amino acid change causes the loss of ligand binding, but the mutant PML-RARα protein retains the ability to heterodimerize with RXRα and thus to bind to retinoid response elements (RAREs). This leads to a dominant negative block of transcription from RAREs that is dose-dependent and not relieved by RA. An unrearranged RARα engineered with this mutation also lost ligand binding and inhibited transcription in a dominant negative manner. We then found that the mutant PML-RARα selectively alters regulation of gene expression in the R4 cell line. R4 cells have lost retinoid-regulation of RXRα and RARβ and the RA-induced loss of PML-RARα protein seen in NB4 cells, but retain retinoid-induction of CD18 and CD38. Thus, the R4 cell line provides data supporting the presence of an RARα-mediated pathway that is independent from gene expression induced or repressed by PML-RARα. The high level of retinoid resistance in vitro and in vivo of cells from some relapsed APL patients suggests similar molecular changes may occur clinically.


2006 ◽  
Vol 203 (4) ◽  
pp. 821-828 ◽  
Author(s):  
Hiromichi Matsushita ◽  
Pier Paolo Scaglioni ◽  
Mantu Bhaumik ◽  
Eduardo M. Rego ◽  
Lu Fan Cai ◽  
...  

The promyelocytic leukemia–retinoic acid receptor α (PML-RARα) protein of acute promyelocytic leukemia (APL) is oncogenic in vivo. It has been hypothesized that the ability of PML-RARα to inhibit RARα function through PML-dependent aberrant recruitment of histone deacetylases (HDACs) and chromatin remodeling is the key initiating event for leukemogenesis. To elucidate the role of HDAC in this process, we have generated HDAC1–RARα fusion proteins and tested their activity and oncogenicity in vitro and in vivo in transgenic mice (TM). In parallel, we studied the in vivo leukemogenic potential of dominant negative (DN) and truncated RARα mutants, as well as that of PML-RARα mutants that are insensitive to retinoic acid. Surprisingly, although HDAC1-RARα did act as a bona fide DN RARα mutant in cellular in vitro and in cell culture, this fusion protein, as well as other DN RARα mutants, did not cause a block in myeloid differentiation in vivo in TM and were not leukemogenic. Comparative analysis of these TM and of TM/PML−/− and p53−/− compound mutants lends support to a model by which the RARα and PML blockade is necessary, but not sufficient, for leukemogenesis and the PML domain of the fusion protein provides unique functions that are required for leukemia initiation.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 967-973 ◽  
Author(s):  
Tadasu Tobita ◽  
Akihiro Takeshita ◽  
Kunio Kitamura ◽  
Kazunori Ohnishi ◽  
Mitsuaki Yanagi ◽  
...  

Differentiation therapy with all-trans retinoic acid (ATRA) has marked a major advance and become the first choice drug in the treatment of acute promyelocytic leukemia (APL). However, patients who relapse from ATRA-induced complete remission (CR) have difficulty in obtaining a second CR with a second course of ATRA therapy alone. We tested the efficacy of a new synthetic retinoid, Am80, in APL that had relapsed from CR induced by ATRA in a prospective multicenter study. Am80 is approximately 10 times more potent than ATRA as an in vitro differentiation inducer, is more stable to light, heat, and oxidation than ATRA, has a low affinity for cellular retinoic acid binding protein, and does not bind to retinoic acid receptor-γ. Patients received Am80, 6 mg/m2, orally alone daily until CR. Of 24 evaluable patients, 14 (58%) achieved CR. The interval from the last ATRA therapy was not different between CR and failure cases. The clinical response was well correlated with the in vitro response to Am80 in patients examined. Adverse events included 1 retinoic acid syndrome, 1 hyperleukocytosis, 9 xerosis, 8 cheilitis, 16 hypertriglyceridemia, and 15 hypercholesterolemia, but generally milder than those of ATRA, which all patients had received previously. Am80 is effective in APL relapsed from ATRA-induced CR and deserves further trials, especially in combination with chemotherapy.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 107-114
Author(s):  
E Paietta ◽  
JP Dutcher ◽  
PH Wiernik

In a case of acute promyelocytic leukemia (APL), the expression of terminal deoxynucleotidyl transferase (TdT), an early lymphoid marker, was detected. Double-fluorescent staining for the myeloid-specific antigens VIM-2 and VIM-D5 in combination with specific antiserum for TdT suggested a mixed leukemic cell population consisting of a morphologically, cytochemically, and immunologically promyelocytic component (80%) and a lymphoid, TdT+ component (20%) that was myelomonocytic in morphology but otherwise without any evidence of nonlymphoid nature. Fluorescent-activated cell analysis revealed that a greater number of cells reacted with monoclonal anti-T antibodies (OKT3, OKT6, and OKT11) than could be identified as lymphoid by TdT expression. As confirmed by double-staining fluorescence microscopy, a large fraction of the promyelocytic leukemia cells were biphenotypic, expressing both myeloid and lymphoid markers (50% positive for VIM-D5 and OKT6, 30% positive for VIM-D5 and OKT3). Subsequently, in vitro differentiation experiments were performed. While treatment of the cells with GCT-conditioned medium favored proliferation, with only a weak and delayed promotion of the cells towards maturation as reflected by enhanced expression of the mature T-marker T3 but persistent expression of the thymocyte antigen, exposure to all-trans and 13-cis retinoic acid resulted in marked differentiation of both the myeloid and the lymphoid cell characteristics. Retinoid treatment resulted in the loss of TdT, a partial disappearance of the T6-antigen, and the expression of the late T cell antigen T3 by almost 70% of the cells. In addition, myeloid maturation was obvious from the morphologic appearance of the cells, as well as from the expression of the OKM1- associated antigen by a majority of the cells. This report concerns a unique case of APL in which, for the first time, a coexistence of promyelocytic and lymphoid elements was detected, with exposure of the cultured leukemic cells to retinoic acid inducing maturation along both the myeloid and the lymphoid lineage.


Blood ◽  
1990 ◽  
Vol 76 (9) ◽  
pp. 1704-1709 ◽  
Author(s):  
S Castaigne ◽  
C Chomienne ◽  
MT Daniel ◽  
P Ballerini ◽  
R Berger ◽  
...  

Abstract Twenty-two patients with acute promyelocytic leukemia were treated with all-trans retinoic acid (RA, 45 mg/m2 per day) for 90 days. Of the 22, four patients were previously untreated, two were resistant after conventional chemotherapy, and 16 were in first (n = 11), second (n = 4), or third (n = 1) relapse. We observed 14 complete response, four transient responses, one failure, and three early deaths. Length of hospitalization and number of transfusions were notably reduced in complete responders. Correction of coagulation disorders and an increase of WBCs were the first signs of all-trans RA efficacy. Morphologic analysis performed at days 0, 15, 30, 45, 60, and 90 showed that complete remissions were obtained without bone marrow (BM) hypoplasia. Presence of Auer rods in the maturing cells confirmed the differentiation effect of the treatment. At remission, the t(15;17) initially present in 20 patients was not found. The in vitro studies showed a differentiation in the presence of all-trans RA in 16 of the 18 tested cases. The single nonresponder to all trans RA in vitro did not respond in vivo. Adverse effects of RA therapy--skin and mucosa dryness, hypertriglyceridemia, and increase of hepatic transaminases-- were frequently noted. We also observed bone pain in 11 patients and hyperleukocytosis in four patients. Whether maintenance treatment consisted of low-dose chemotherapy or all-trans RA, early relapses were observed. Five patients are still in complete remission (CR) at 4 to 13 months. Our study confirms the major efficacy of all-trans RA in M3, even in relapsing patients. Remissions are obtained by a differentiation process.


Blood ◽  
2000 ◽  
Vol 96 (9) ◽  
pp. 3200-3208 ◽  
Author(s):  
Sylvie Côté ◽  
Dacheng Zhou ◽  
Andrea Bianchini ◽  
Clara Nervi ◽  
Robert E. Gallagher ◽  
...  

Acute promyelocytic leukemia (APL) is characterized by a specific translocation, t(15;17), that fuses the promyelocytic leukemia (PML) gene with the RA receptor RARα. Pharmacologic doses of retinoic acid (RA) induce differentiation in human APL cells and complete clinical remissions. Unfortunately, APL cells develop resistance to RA in vitro and in vivo. Recently, mutations in PML/RARα have been described in APL cells from patients clinically resistant to RA therapy. The mutations cluster in 2 regions that are involved in forming the binding pocket for RA. These mutant PML/RARα proteins have been expressed in vitro, which shows that they cause a diversity of alterations in binding to ligand and to nuclear coregulators of transcription, leading to varying degrees of inhibition of retinoid-induced transcription. This contrasts with the nearly complete dominant negative activity of mutations in PML/RARα previously characterized in cell lines developing RA resistance in vitro. Current data from this study provide additional insight into the molecular mechanisms of resistance to RA and suggest that alterations in the ability of mutants to interact with coregulators can be determinant in the molecular mechanism of resistance to RA. In particular, ligand-induced binding to the coactivator ACTR correlated better with transcriptional activation of RA response elements than the ligand-induced release of the corepressor SMRT. The diversity of effects that are seen in patient-derived mutations may help explain the partial success to date of attempts to overcome this mechanism of resistance in patients by the clinical use of histone deacetylase inhibitors.


Sign in / Sign up

Export Citation Format

Share Document