scholarly journals Numerical Simulation of Shale Gas Multiscale Seepage Mechanism-Coupled Stress Sensitivity

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xun Yan ◽  
Jing Sun ◽  
Dehua Liu

The complexity of the gas transport mechanism in microfractures and nanopores is caused by the feature of multiscale and multiphysics. Figuring out the flow mechanism is of great significance for the efficient development of shale gas. In this paper, an apparent permeability model which covers continue, slip, transition, and molecular flow and geomechanical effect was presented. Additionally, a mathematical model comprising multiscale, geomechanics, and adsorption phenomenon was proposed to characterize gas flow in the shale reservoir. The aim of this paper is to investigate some important impacts in the process of gas transportation, which includes the shale stress sensitivity, adsorption phenomenon, and reservoir porosity. The results reveal that the performance of the multistage fractured horizontal well is strongly influenced by stress sensitivity coefficient. The cumulative gas production will decrease sharply when the shale gas reservoir stress sensitivity coefficient increases. In addition, the adsorption phenomenon has an influence on shale gas seepage and sorption capacity; however, the effect of adsorption is very weak in the early gas transport period, and the impact of later will increase. Moreover, shale porosity also greatly affects the shale gas transportation.

2021 ◽  
Author(s):  
Yu Jiang ◽  
John Killough ◽  
Linkai Li ◽  
Xiaona Cui ◽  
Jin Tang

Abstract The exploitation of shale gas has attracted extensive attention in industry and academia. Multi-scale gas transportation mechanisms in matrix and fractures have been well studied. However, due to the presence of water originating from both fracking fluids and connate water, shale gas production is also greatly affected by water imbibition and flowback, of which the processes have not been thoroughly analyzed. This paper aims at presenting a comprehensive multi-continuum multi-component model to characterize the complicated shale gas flow behaviors as well as the impact of non-Darcy water flow on shale gas production. A two-phase numerical simulator is built up with multi-continuum settings. Shale matrix is split into organic and inorganic matters while natural and hydraulic fractures are modeled using an embedded discrete fracture model (EDFM). Fracture closure and elongation are modeled using a dynamic gridding approach. Different transportation mechanisms are considered to describe gas flow in shale, including Knudsen diffusion, ab/desorption, and convection. The low-velocity non-Darcy flow of water is used in inorganic pores to analyze the effect of water flow. A pre-stage model based on pumping history is simulated firstly before production starts. This serves as an initialization step to model fracking fluid imbibition and early-stage water flowback. This pre-stage simulation gives out more precise pressure and saturation profiles than the conventional non-equilibrium initialization method, especially in enhanced pore volumes and fractures. Based upon simulation results from the production period, Langmuir isotherm absorption has shown a massive impact on gas flow in shale, and Knudsen diffusion weights highest among transport mechanisms. Water non-Darcy flow better benefits in simulating both early-stage water flowback and production process compared with Darcy flow, which gives us a new explanation on the low flowback efficiency in real shale gas operations. Studies on early-stage water flowback also show that the flowback affects saturation distribution, which has a strong relationship with gas production and shall not be ignored. This work establishes a novel method to simulate and analyze shale gas production. It considers multiple and complex flow mechanisms and gives out better estimates of water flux. It is also used to initialize a model for pumping water imbibition and early-stage flowback, which can be used as technical resources for analyzing and simulating unconventional plays.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2475
Author(s):  
Andres Soage ◽  
Ruben Juanes ◽  
Ignasi Colominas ◽  
Luis Cueto-Felgueroso

We analyze the effect that the geometry of the Effective Propped Volume (EPV) has on the economic performance of hydrofractured multistage shale gas wells. We study the sensitivity of gas production to the EPV’s geometry and we compare it with the sensitivity to other parameters whose relevance in the production of shale gas is well known: porosity, kerogen content and permeability induced in the Stimulated Recovery Volume (SRV). To understand these sensitivities, we develop a high-fidelity 3D numerical model of shale gas flow that allows determining both the Estimated Ultimate Recovery (EUR) of gas as well as analyzing the decline curves of gas production (DCA). We find that the geometry of the EPV plays an important role in the economic performance and gas production of shale wells. The relative contribution of EPV geometry is comparable to that of induced permeability of the SRV or formation porosity. Our results may lead to interesting technological developments in the oild and gas industry that improve economic efficiency in shale gas production.


2019 ◽  
Vol 11 (7) ◽  
pp. 2114 ◽  
Author(s):  
Xuelei Feng ◽  
Fengshan Ma ◽  
Haijun Zhao ◽  
Gang Liu ◽  
Jie Guo

Gas flow mechanisms and apparent permeability are important factors for predicating gas production in shale reservoirs. In this study, an apparent permeability model for describing gas multiple flow mechanisms in nanopores is developed and incorporated into the COMSOL solver. In addition, a dynamic permeability equation is proposed to analyze the effects of matrix shrinkage and stress sensitivity. The results indicate that pore size enlargement increases gas seepage capacity of a shale reservoir. Compared to conventional reservoirs, the ratio of apparent permeability to Darcy permeability is higher by about 1–2 orders of magnitude in small pores (1–10 nm) and at low pressures (0–5 MPa) due to multiple flow mechanisms. Flow mechanisms mainly include surface diffusion, Knudsen diffusion, and skip flow. Its weight is affected by pore size, reservoir pressure, and temperature, especially pore size ranging from 1 nm to 5 nm and reservoir pressures below 5 MPa. The combined effects of matrix shrinkage and stress sensitivity induce nanopores closure. Therefore, permeability declines about 1 order of magnitude compare to initial apparent permeability. The results also show that permeability should be adjusted during gas production to ensure a better accuracy.


2016 ◽  
Vol 9 (1) ◽  
pp. 207-215 ◽  
Author(s):  
Hongling Zhang ◽  
Jing Wang ◽  
Haiyong Zhang

Shale gas is one of the primary types of unconventional reservoirs to be exploited in search for long-lasting resources. Production from shale gas reservoirs requires horizontal drilling with hydraulic fracturing to achieve the most economic production. However, plenty of parameters (e.g., fracture conductivity, fracture spacing, half-length, matrix permeability, and porosity,etc) have high uncertainty that may cause unexpected high cost. Therefore, to develop an efficient and practical method for quantifying uncertainty and optimizing shale-gas production is highly desirable. This paper focuses on analyzing the main factors during gas production, including petro-physical parameters, hydraulic fracture parameters, and work conditions on shale-gas production performances. Firstly, numerous key parameters of shale-gas production from the fourteen best-known shale gas reservoirs in the United States are selected through the correlation analysis. Secondly, a grey relational grade method is used to quantitatively estimate the potential of developing target shale gas reservoirs as well as the impact ranking of these factors. Analyses on production data of many shale-gas reservoirs indicate that the recovery efficiencies are highly correlated with the major parameters predicted by the new method. Among all main factors, the impact ranking of major factors, from more important to less important, is matrix permeability, fracture conductivity, fracture density of hydraulic fracturing, reservoir pressure, total organic content (TOC), fracture half-length, adsorbed gas, reservoir thickness, reservoir depth, and clay content. This work can provide significant insights into quantifying the evaluation of the development potential of shale gas reservoirs, the influence degree of main factors, and optimization of shale gas production.


SPE Journal ◽  
2021 ◽  
pp. 1-26
Author(s):  
Zizhong Liu ◽  
Hamid Emami-Meybodi

Summary The complex pore structure and storage mechanism of organic-rich ultratight reservoirs make the hydrocarbon transport within these reservoirs complicated and significantly different from conventional oil and gas reservoirs. A substantial fraction of pore volume in the ultratight matrix consists of nanopores in which the notion of viscous flow may become irrelevant. Instead, multiple transport and storage mechanisms should be considered to model fluid transport within the shale matrix, including molecular diffusion, Knudsen diffusion, surface diffusion, and sorption. This paper presents a diffusion-based semianalytical model for a single-component gas transport within an infinite-actingorganic-rich ultratight matrix. The model treats free and sorbed gas as two phases coexisting in nanopores. The overall mass conservation equation for both phases is transformed into one governing equation solely on the basis of the concentration (density) of the free phase. As a result, the partial differential equation (PDE) governing the overall mass transport carries two newly defined nonlinear terms; namely, effective diffusion coefficient, De, and capacity factor, Φ. The De term accounts for the molecular, Knudsen, and surface diffusion coefficients, and the Φ term considers the mass exchange between free and sorbed phases under sorption equilibrium condition. Furthermore, the ratio of De/Φ is recognized as an apparent diffusion coefficient Da, which is a function of free phase concentration. The nonlinear PDE is solved by applying a piecewise-constant-coefficient technique that divides the domain under consideration into an arbitrary number of subdomains. Each subdomain is assigned with a constant Da. The diffusion-based model is validated against numerical simulation. The model is then used to investigate the impact of surface and Knudsen diffusion coefficients, porosity, and adsorption capacity on gas transport within the ultratight formation. Further, the model is used to study gas transport and production from the Barnett, Marcellus, and New Albany shales. The results show that surface diffusion significantly contributes to gas production in shales with large values of surface diffusion coefficient and adsorption capacity and small values of Knudsen diffusion coefficient and total porosity. Thus, neglecting surface diffusion in organic-rich shales may result in the underestimation of gas production.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ming Yue ◽  
Xiaohe Huang ◽  
Fanmin He ◽  
Lianzhi Yang ◽  
Weiyao Zhu ◽  
...  

Volume fracturing is a key technology in developing unconventional gas reservoirs that contain nano/micron pores. Different fracture structures exert significantly different effects on shale gas production, and a fracture structure can be learned only in a later part of detection. On the basis of a multiscale gas seepage model considering diffusion, slippage, and desorption effects, a three-dimensional finite element algorithm is developed. Two finite element models for different fracture structures for a shale gas reservoir in the Sichuan Basin are established and studied under the condition of equal fracture volumes. One is a tree-like fracture, and the other is a lattice-like fracture. Their effects on the production of a fracture network structure are studied. Numerical results show that under the same condition of equal volumes, the production of the tree-like fracture is higher than that of the lattice-like fracture in the early development period because the angle between fracture branches and the flow direction plays an important role in the seepage of shale gas. In the middle and later periods, owing to a low flow rate, the production of the two structures is nearly similar. Finally, the lattice-like fracture model is regarded as an example to analyze the factors of shale properties that influence shale gas production. The analysis shows that gas production increases along with the diffusion coefficient and matrix permeability. The increase in permeability leads to a larger increase in production, but the decrease in permeability leads to a smaller decrease in production, indicating that the contribution of shale gas production is mainly fracture. The findings of this study can help better understand the influence of different shapes of fractures on the production in a shale gas reservoir.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Zhiqiang Li ◽  
Zhilin Qi ◽  
Wende Yan ◽  
Zuping Xiang ◽  
Xiang Ao ◽  
...  

Production simulation is an important method to evaluate the stimulation effect of refracturing. Therefore, a production simulation model based on coupled fluid flow and geomechanics in triple continuum including kerogen, an inorganic matrix, and a fracture network is proposed considering the multiscale flow characteristics of shale gas, the induced stress of fracture opening, and the pore elastic effect. The complex transport mechanisms due to multiple physics, including gas adsorption/desorption, slip flow, Knudsen diffusion, surface diffusion, stress sensitivity, and adsorption layer are fully considered in this model. The apparent permeability is used to describe the multiple physics occurring in the matrix. The model is validated using actual production data of a horizontal shale gas well and applied to predict the production and production increase percentage (PIP) after refracturing. A sensitivity analysis is performed to study the effects of the refracturing pattern, fracture conductivity, width of stimulated reservoir volume (SRV), SRV length of new and initial fractures, and refracturing time on production and the PIP. In addition, the effects of multiple physics on the matrix permeability and production, and the geomechanical effects of matrix and fracture on production are also studied. The research shows that the refracturing design parameters have an important influence on the PIP. The geomechanical effect is an important cause of production loss, while slippage and diffusion effects in matrix can offset the production loss.


2017 ◽  
Vol 48 ◽  
pp. 13-23 ◽  
Author(s):  
Shihao Wang ◽  
Andrew E. Pomerantz ◽  
Wenyue Xu ◽  
Alexander Lukyanov ◽  
Robert L. Kleinberg ◽  
...  

Author(s):  
Levi André B. Vigdal ◽  
Lars E. Bakken

Adopting the innovative technology found in a compressor able to compress a mixture of natural gas and condensate has great potential for meeting future challenges in subsea oil and gas production. Benefits include reduced size, complexity and cost, enhanced well output, longer producing life and increased profits, which in turn offer opportunities for exploiting smaller oil and gas discoveries or extending the commercial life of existing fields. Introducing liquid into a centrifugal compressor creates several thermodynamic and fluid-mechanical challenges. The paper reviews some of the drive mechanisms involved in wet gas compression and views them in the context of the test results presented. An inlet guide vane (IGV) assembly has been installed in a test facility for wet gas compressors and the effect of wet gas on IGV performance documented. The impact of changes in IGV performance on impeller and diffuser has also been documented. The results have been discussed and correction methods compared.


Sign in / Sign up

Export Citation Format

Share Document