scholarly journals Experimental and Numerical Analysis of the Bolt Connections in a Low-Rise Precast Wall Panel Structure System

2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
Wei Guo ◽  
Zhipeng Zhai ◽  
Zhiwu Yu ◽  
Feng Chen ◽  
Yongzhi Gong ◽  
...  

This paper develops a novel dry connection utilizing high-strength bolts and introduces the corresponding low-rise precast wall panel structure system. To investigate the seismic performance of the structure system with full bolt connections, monotonic loading tests of the connection joint and cyclic lateral loading tests of three full-scaled precast shear walls are both conducted. Based on the test data, axial and shear mechanical models of the connection are given. Meanwhile, experimental results show that the failure mode of the connection is dominated by anchored rebar ductile rupture, and the precast structure system presents a stable energy dissipation capacity and a good seismic ductility. The numerical model of the precast shear wall is then developed and validated by the cyclic loading test. Also a simplified calculation method to predict the lateral strength of the precast shear wall is proposed. According to the calculation results, the distance between the center of the connection and the edge of the shear wall is suggested to be 150 mm, while the wall thickness is recommended to be 120 mm or 150 mm. Finally, a three-story precast wall panel structure is employed to assess the collapse performance of the proposed precast structure system by using the presented numerical model. The results indicate that the proposed structure system with full bolt connections has high stiffness and high seismic resistance against collapse.

2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Min Gan ◽  
Yu Yu ◽  
Liren Li ◽  
Xisheng Lu

Four test pieces with different steel plate center-to-center distances and reinforcement ratios are subjected to low-cycle repeat quasistatic loading to optimize properties as failure mode, hysteretic curve, skeleton curve, energy dissipation parameters, strength parameters, and seismic performance of high-strength concrete low-rise shear walls. The embedded steel plates are shown to effectively restrict wall crack propagation, enhance the overall steel ratio, and improve the failure mode of the wall while reducing the degree of brittle failure. Under the same conditions, increasing the spacing between the steel plates in the steel plate concrete shear wall can effectively preserve the horizontal bearing capacity of the shear wall under an ultimate load. The embedded steel plates perform better than concealed bracing in delaying stiffness degeneration in the low-rise shear walls, thus safeguarding their long-term bearing capacity. The results presented here may provide a workable basis for shear wall design optimization.


2018 ◽  
Vol 4 (11) ◽  
pp. 2667
Author(s):  
Hayder Fadhil ◽  
Amer Ibrahim ◽  
Mohammed Mahmood

Corrugated steel plate shear wall (CSPSW) is one of the lateral resistance systems which consists mainly of steel frame (beam and column) with vertical or horizontal corrugated steel plate connected to the frame by weld, bolts or both. This type of steel shear wall characterized by low cost and short construction time with high strength, ductility, initial stiffness and excellent ability to dissipate energy. The aim of this paper is to evaluate the effect of corrugation angle and its direction on the performance of CSPSW under cyclic loading. The Finite element analysis was employed to achieve the research aim. The FE models were validated with experimental data available in the literature. Results reveal that the corrugation angle has a clear influence on initial stiffness, strength, ductility, and energy dissipation of CSPSW. The optimum performance of CSPSW can be obtained with angles of 30o for CSPSW with vertical corrugation and 20o for CSPSW with horizontal corrugation. The use of CSPSW with vertical corrugation provides higher strength, stiffness, and ductility compared to CSPSW with horizontal corrugation. Therefore, it is recommended to use CSPSW with vertical corrugation.


Author(s):  
Nima Aghniaey ◽  
Murat Saatcioglu ◽  
Hassan Aoude

Research on seismic behaviour of shear walls with high-strength steel is limited. A combined experimental and analytical investigation was conducted to assess seismic behaviour of flexure-dominant shear walls. A large-scale concrete shear wall with Grade 690 MPa (ASTM A1035) reinforcement and 84 MPa concrete was tested under simulated seismic loading. The wall was a ¼ -scale of a 6-storey shear wall, with 4.53 m height and 1.45 m length. It sustained a lateral drift of 1.8% prior to developing failure due to the rupturing of longitudinal reinforcement. This is 35% less than the drift capacity of a companion wall reinforced with 400 MPa reinforcement tested earlier. VecTor2 software was used to conduct an analytical parametric study to expand the experimental findings. The results indicate that the reinforcement grade has a significant impact on strength, ductility and hysteretic behaviour of shear walls.


2020 ◽  
Vol 20 (06) ◽  
pp. 2040007
Author(s):  
Limeng Zhu ◽  
Haipeng Yan ◽  
Po-Chien Hsiao ◽  
Jianhua Zhang

An innovative composite vertical connecting structure (CVC) with capacity carrying and energy-dissipating ability is proposed in this study, which could be used in prefabricated composite shear wall structural systems to enhance the resilience and seismic performance of structural system. The CVC structure is mainly composed of three parts, including the connecting zone, the capacity bearing zone characterized by high strength and elastic deforming ability, and the energy-dissipating zone assembled by replaceable metal dampers. The low-yield strength steel and high-strength steel are used, respectively, for the metal dampers in the energy-dissipating zone and the concrete-filled high-strength steel tubes in the bearing capacity zone to enhance the energy dissipation and self-centering abilities of CVC structures. The working mechanism is analyzed and validated through finite element models built in ABAQUS. The hysteretic behavior is simulated to evaluate their performance. First, the metal dampers are designed. The theoretical and finite elemental parametric analysis are carried out. According to the simulation results, the “Z-shaped” metal dampers exhibit better energy-dissipating ability than the rectangular shape, in which the “Z-shaped” metal dampers with 45∘ show the best performance. Simultaneously, the results of the models calculated by the finite element method and theoretical analysis work very well with each other. Furthermore, seven FE models of shear walls with CVC structures are designed. Monotonic and cyclic loading simulations are conducted. The failure modes and comprehensive mechanical performance are investigated and evaluated according to their calculated force–displacement curves, skeleton curves, and ductility coefficients. The results indicate that the CVC structure delivered preferable lateral-bearing capacity and displacement ductility. Finally, according to available design standards, the lateral stiffness of CVC structures could be conventionally controlled and some practical design recommendations are discussed.


2014 ◽  
Vol 1079-1080 ◽  
pp. 354-358 ◽  
Author(s):  
Quan Dong Xiao ◽  
Zheng Xing Guo ◽  
Zhong Yuan Zhang

This paper describes an ongoing research program on the seismic resistance performance of the double-wall precast concrete (DWPC) shear wall. Low-cyclic reversed loading test of three new full scale specimens are carried out based on the previous studies. The test results indicate that DWPC shear walls have higher initial stiffness, cracking load, yielding load and ultimate load. The displacement ductility ratios of DWPC shear walls are no less than that of cast-in-situ shear wall. The hysteretic curves of all specimens are plump, and the trend of skeleton curves is basically the same. The seismic energy dissipation capacities of DWPC specimens are close to those of cast-in-situ specimen. All the specimens have shown favorable seismic resistance performance.


2019 ◽  
Vol 13 (03n04) ◽  
pp. 1940006
Author(s):  
W. C. Xue ◽  
Y. Li ◽  
L. Cai ◽  
X. Hu

Compared with traditional precast concrete composite shear walls (PCCSWs) with two boundary elements adjacent to edges, the PCCSWs with multiple boundary elements investigated in this paper have extra boundary elements at the intersections with other shear walls. In this paper, low reversed cyclic loading tests were conducted on three full-scale shear wall specimens with multiple boundary elements under in-plane loading and two full-scale shear wall specimens under out-of-plane loading. The in-plane loaded specimens included a PCCSW with double precast layers (i.e. precast concrete double skin shear wall, PCDSSW), a PCCSW with single precast layer, and a cast-in-pace (CIP) control specimen, whereas the out-of-plane loaded specimens included a PCDSSW and a CIP control specimen. Test results revealed that all specimens failed in bending. The hysteresis loops of the precast composite specimens were stable but slightly pinching, which were similar to those of the corresponding CIP control specimen. Compared with the CIP specimens, the PCDSSWs showed similar energy dissipation. The loading capacity of the precast composite specimens was generally a little lower than that of the corresponding CIP specimen with difference not more than 15%. In the in-plane loading tests, the PCDSSW reached higher displacement ductility (2.45) than the CIP specimen (1.88), whereas the ductility of the PCCSW with single precast layer was relatively low. Regarding the specimens under out-of-plane loading, the ductility of the PCDSSW (3.83) was close to that of the CIP specimen (3.02). Moreover, the stiffness degradation of the precast composite specimens was found to be comparable to that of the control specimens. Based on the test results, a restoring force model was developed.


2013 ◽  
Vol 53 (6) ◽  
pp. 913-922
Author(s):  
Ulrich Wirth ◽  
Nuri Shirali ◽  
Vladimír Křístek ◽  
Helmut Kurth

Based on a series of alternating, displacement-controlled load tests on ten one-third scale models, to study the behaviour of the interface of a hybrid shear wall system, it was proved that the concept of hybrid construction in earthquake prone regions is feasible. The hybrid shear-wall system consists of typical reinforced concrete shear walls with composite edge members or flanges. Ten different anchorage bar arrangements were developed and tested to evaluate the column-shearwall interface behaviour under cyclic shear forces acting along the interface between column and wall panel. Finite element models of the test specimens were developed that were capable of capturing the integrated concrete and reinforcing steel behaviour in the wall panels. Special models were  developed to capture the interface behaviour between the edge columns and the shear wall. A comparison between the experimental results and the numerical results shows excellent agreement, and clearly supports the validity of the model developed for predicting the non-linear response of the hybrid wall system under various load conditions.


2013 ◽  
Vol 275-277 ◽  
pp. 1176-1179
Author(s):  
Wan Yun Yin ◽  
Yun Lin Liu ◽  
Juan Ye ◽  
Jian Hua Cui ◽  
Ren Cai Jin ◽  
...  

Based on the needs of housing industrialization, prefabricated experimental study on performance of shear wall structure is essential. This article describes the specific steps 、experimental data processing method and finite element analysis of prefabricated shear walls and cast shear wall under the low cyclic reversed loading. It is to solve the error of the measurement results from error experimental methods of operation. Finally, we also look forward to the expected results of the comparative test of the shear wall structure.


2012 ◽  
Vol 594-597 ◽  
pp. 1816-1821
Author(s):  
Yi Sheng Su ◽  
Jin Yun Quan ◽  
Wen Zhang ◽  
Yi Bin Yang

In order to discuss how the different forms of steel impact on seismic behavior of steel reinforced high-strength concrete(SRHC) L-shape short-pier shear wall, four different steel forms SRHC L-shaped section short-pier shear wall members with low reversed cyclic loading were simulated by ABAQUS. The four steel forms were steel bar, solid-web steel, truss-type steel and hole-type steel. The result show that: different steel forms can significantly impact on the seismic performance of SRHC L-shaped section short-pier shear walls and the seismic capacity range from high to low as follow: with solid-web steel, with hole-type steel, with truss-type steel and reinforced.


2014 ◽  
Vol 501-504 ◽  
pp. 1615-1618
Author(s):  
Pin Le Zhang

Shear wall systems are the most commonly used lateral load resisting systems in high seismic zones because they provide significant lateral strength, stiffness, and deformation capacity. The work further investigates the seismic performance of different kinds of shear walls. Classified and brief comments about the seismic performance and the exist drawback of different kinds of shear walls and its application are conducted. Lastly, some useful suggestions and a new structure are proposed for the further research.


Sign in / Sign up

Export Citation Format

Share Document