scholarly journals HYBRID SHEARWALL SYSTEM — SHEAR STRENGTH AT THE INTERFACE CONNECTION

2013 ◽  
Vol 53 (6) ◽  
pp. 913-922
Author(s):  
Ulrich Wirth ◽  
Nuri Shirali ◽  
Vladimír Křístek ◽  
Helmut Kurth

Based on a series of alternating, displacement-controlled load tests on ten one-third scale models, to study the behaviour of the interface of a hybrid shear wall system, it was proved that the concept of hybrid construction in earthquake prone regions is feasible. The hybrid shear-wall system consists of typical reinforced concrete shear walls with composite edge members or flanges. Ten different anchorage bar arrangements were developed and tested to evaluate the column-shearwall interface behaviour under cyclic shear forces acting along the interface between column and wall panel. Finite element models of the test specimens were developed that were capable of capturing the integrated concrete and reinforcing steel behaviour in the wall panels. Special models were  developed to capture the interface behaviour between the edge columns and the shear wall. A comparison between the experimental results and the numerical results shows excellent agreement, and clearly supports the validity of the model developed for predicting the non-linear response of the hybrid wall system under various load conditions.

2020 ◽  
Author(s):  
Ehsan Borbory

One of the types of earthquake-resistant systems is the concrete shear wall system, which has attracted the attention of engineers due to its good performance in past earthquakes. But some architectural constraints force engineers to install openings in shear walls; thus, this will affect the behavior of the shear wall. Many researchers have conducted experimental and finite element studies for assessing the effects of openings in reinforced concrete shear walls. However, there is a lack of comprehensive comparisons between different studies. This paper reviews some most recent experimental and finite element studies available in the literature and presents a review of the main contributions. This literature review reveals that the seismic responses and the stiffness of structures are influenced by the size and location of the openings in the reinforced shear wall.


Author(s):  
Enzo Martinelli ◽  
Ciro Faella ◽  
Emidio Nigro ◽  
Carmine Lima

<p>This paper summarizes the main features of the seismic retrofitting project of a school building located in Montella (AV), Italy. Specifically, it describes the as-built status in terms of structural organization, member detailing, and existing materials properties. Then, it outlines the main assumptions and results obtained from seismic analysis, of both as-built and retrofitted structure. Comments about the construction stage are also reported by describing the main operations put in place with the aim to realize the shear wall system, which is the main retrofitting intervention, and some local strengthening measures consisting in steel plating and jacketing of some underdesigned RC members. Some emphasis is placed on the realization of micro-piles and extra foundations of the aforementioned shear walls. Besides its specific interest, the reported project may be intended as representative of a wide class of seismic assessment and retrofitting projects that have been realized in Italy in the last decade.</p>


2015 ◽  
Vol 1120-1121 ◽  
pp. 1516-1519
Author(s):  
Yong Song Shao ◽  
Feng Ru Shao

Due to mechanical performances of brace and steel plate, mechanical properties of semi-rigid joints and its construction and installation, semi-rigid steel frame-braced steel plate shear wall system is proposed. Nonlinear static analysis with parameters (thickness of plate, type of brace, size of brace and the ratio of span to height) changed of a single-span and single-floor semi-rigid steel frame-braced steel plate shear wall system illustrates that braced steel plate shear walls contributes obviously to bearing capacity and lateral rigidity of semi-rigid steel frame. Also, the finite element analysis (by ANSYS) show that semi-rigid steel frame-braced steel plate shear wall system has excellent ductility.


2013 ◽  
Vol 663 ◽  
pp. 159-163
Author(s):  
Hae Jun Yang ◽  
Hyun Do Yun

In this study, two reinforced concrete (RC) squat shear walls with height-to-length ratio of 0.55 and non-ductile reinforcement details are tested under reversed cyclic loading. Emphasis of the study is placed on the hysteretic behavior and cracking procedure of RC squat shear walls in accordance with the presence and absence of vertical seam on the wall panel. Two specimens had the same rectangular cross-section of 1,100 x 50mm, with wall panel heights of 600mm. To investigate the effect of vertical seams on the wall panel on the structural behavior of shear wall, one wall (CON-S) with three vertical seams with dimension of 260 x 40mm was made and the other (CON-N) was a solid wall without seams. The test results indicated that a squat shear wall with vertical seams exhibited more stable hysteretic behavior than a solid shear wall. Vertical seams on the wall panel improve the ductility and energy dissipation capacity but decrease the maximum strength of RC non-ductile squat shear wall.


2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
Wei Guo ◽  
Zhipeng Zhai ◽  
Zhiwu Yu ◽  
Feng Chen ◽  
Yongzhi Gong ◽  
...  

This paper develops a novel dry connection utilizing high-strength bolts and introduces the corresponding low-rise precast wall panel structure system. To investigate the seismic performance of the structure system with full bolt connections, monotonic loading tests of the connection joint and cyclic lateral loading tests of three full-scaled precast shear walls are both conducted. Based on the test data, axial and shear mechanical models of the connection are given. Meanwhile, experimental results show that the failure mode of the connection is dominated by anchored rebar ductile rupture, and the precast structure system presents a stable energy dissipation capacity and a good seismic ductility. The numerical model of the precast shear wall is then developed and validated by the cyclic loading test. Also a simplified calculation method to predict the lateral strength of the precast shear wall is proposed. According to the calculation results, the distance between the center of the connection and the edge of the shear wall is suggested to be 150 mm, while the wall thickness is recommended to be 120 mm or 150 mm. Finally, a three-story precast wall panel structure is employed to assess the collapse performance of the proposed precast structure system by using the presented numerical model. The results indicate that the proposed structure system with full bolt connections has high stiffness and high seismic resistance against collapse.


PCI Journal ◽  
1996 ◽  
Vol 41 (3) ◽  
pp. 64-80 ◽  
Author(s):  
Khaled A. Soudki ◽  
Jeffrey S. West ◽  
Sami H. Rizkalla ◽  
Bruce Blackett

2019 ◽  
Author(s):  
Hossein Alimohammadi ◽  
Mostafa Dalvi Esfahani ◽  
Mohammadali Lotfollahi Yaghin

In this study, the seismic behavior of the concrete shear wall considering the opening with different shapes and constant cross-section has been studied, and for this purpose, several shear walls are placed under the increasingly non-linear static analysis (Pushover). These case studies modeled in 3D Abaqus Software, and the results of the ductility coefficient, hardness, energy absorption, added resistance, the final shape, and the final resistance are compared to shear walls without opening.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Sung-Jun Pang ◽  
Kyung-Sun Ahn ◽  
Seog Goo Kang ◽  
Jung-Kwon Oh

AbstractIn this study, the lateral resistances of mass timber shear walls were investigated for seismic design. The lateral resistances were predicted by kinematic models with mechanical properties of connectors, and compared with experimental data. Four out of 7 shear wall specimens consisted of a single Ply-lam panel and withdrawal-type connectors. Three out of 7 shear wall specimens consisted of two panels made by dividing a single panel in half. The divided panels were connected by 2 or 4 connectors like a single panel before being divided. The applied vertical load was 0, 24, or 120 kN, and the number of connectors for connecting the Ply-lam wall-to-floor was 2 or 4. As a result, the tested data were 6.3 to 52.7% higher than the predicted value by kinematic models, and it means that the lateral resistance can be designed by the behavior of the connector, and the prediction will be safe. The effects of wall-to-wall connectors, wall-to-floor connectors and vertical loads on the shear wall were analyzed with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document