scholarly journals Triband Compact Printed Antenna for 2.4/3.5/5 GHz WLAN/WiMAX Applications

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Pracha Osklang ◽  
Chuwong Phongcharoenpanich ◽  
Prayoot Akkaraekthalin

This research presents a triband compact printed antenna for WLAN and WiMAX applications. The antenna structure consists of a folded open stub, long and short L-shaped strips, and asymmetric trapezoid ground plane. Besides, it is of simple structure and operable in 2.4 GHz and 5 GHz (5.2/5.8 GHz) WLAN and 3.5/5.5 GHz WiMAX bands. The folded open stub and long and short L-shaped strips realize impedance matching at 2.4, 3.5, 5.2, and 5.8 GHz, and the asymmetric trapezoid ground plane fine-tunes impedance matching at 5.2, 5.5, and 5.8 GHz. In addition, the equivalent circuit model consolidated into lumped elements is also presented to explain its impedance matching characteristics. In this study, simulations were carried out, and a prototype antenna was fabricated and experimented. The simulation and experimental results are in good agreement. Specifically, the simulated and experimental radiation patterns are omnidirectional at 2.4, 3.5, and 5.2 GHz and near-omnidirectional at 5.5 and 5.8 GHz. Furthermore, the simulated and measured antenna gains are 1.269–3.074 dBi and 1.10–2.80 dBi, respectively. Essentially, the triband compact printed antenna covers 2.4 GHz and 5 GHz (5.2/5.8 GHz) WLAN and 3.5/5.5 GHz WiMAX frequency bands and thereby is a good candidate for WLAN/WiMAX applications.

2018 ◽  
Vol 7 (2) ◽  
pp. 68-75 ◽  
Author(s):  
P. N. Vummadisetty ◽  
A. Kumar

This research article presents, a compact 0.19 λ x 0.32 λ size ACS fed printed monopole wideband antenna loaded with multiple radiating branches suitable for LTE2300/WiBro, 5 GHz WLAN and WiMAX applications. The proposed triple band uniplanar antenna encompasses of C shaped strip, L shaped strip, rectangular shaped strip and a lateral ground plane. All the radiating strips and ground plane are etched on the 26 × 15 m size low cost FR4 epoxy substrate. This designed geometry evoked three independent reonances at 2.3 GHz, 3.5 GHz and 5.5 GHz with precise impedance matching over each operating band. The reflection coefficient ( ) response of the presented antenna demonstrates three distinct resonant modes associated with -10 dB bandwidths are about 2.24-2.40 GHz, 3.38-3.83 GHz and 5.0-6.25 GHz respectively. From the study, it is also observed that the proposed design works perfect with microstrip as well as CPW feedings. Hence the designed Multi Feed Multi Band (MFMB) antenna can be easily deployed in to any portable wireless device that works for 2.3/3.5/ 5 GHz frequency bands.


2016 ◽  
Vol 9 (3) ◽  
pp. 711-717 ◽  
Author(s):  
X. Chen ◽  
L. Yang ◽  
L. Wang ◽  
G. Fu

A super-wideband (SWB) omnidirectional antenna is reported in Lau et al. in 2005 and 2008, but the antenna structure was complex and the radiation properties were unsatisfactory. In this paper, a SWB omnidirectional antenna with simple structure and improved radiation properties is presented. The antenna just consists of a two-stage inverted cone and two shorting pins. The proposed two-stage cone can improve the impedance matching in super-wide bandwidth, and the optimized shorting pins can reduce the cut-off frequency more than 50%. The calculated and measured results are investigated to confirm the antenna performances. The impedance bandwidth of the antenna for voltage standing wave ratio ≤ 2 achieves more than 1:22.1, covering 0.905 GHz to the above band. The smaller sizes than those referred by Lau et al. in 2008 are obtained. The profile of the antenna is 0.078λc, and the diameter of the radiation body is 0.217λc (λc is the wavelength of the cut-off frequency of the antenna). In addition, the radiation properties of the kind of SWB omnidirectional antenna are improved obviously. In the whole band, the ripple levels in horizontal radiation patterns are not more than 6.6 dB, and the cross-polarized levels are reduced by 9 dB.


2016 ◽  
Vol 9 (5) ◽  
pp. 1191-1196 ◽  
Author(s):  
Yogesh Kumar Choukiker ◽  
Jagadish Chandra Mudiganti

A compact size hybrid fractal antenna is proposed for the application in wideband frequency range. The proposed antenna structure is the combination of Koch curve and self-affine fractal geometries. The Koch curve and self-affine geometries are optimized to achieve a wide bandwidth. The feed circuit is a microstrip line with a matching section over a rectangular ground plane. The measured impedance matching fractal bandwidth (S11 ≤ −10 dB) is 72.37% from 1.6 to 3.4 GHz. An acceptable agreement is obtained from the simulated and measured antenna performance parameters.


2018 ◽  
Vol 136 ◽  
pp. 1422-1427
Author(s):  
Sung-Ryul Huh ◽  
Min Park ◽  
Bong-Ki Jung ◽  
Doo-Hee Chang ◽  
Tae-Seong Kim ◽  
...  

2014 ◽  
Vol 875-877 ◽  
pp. 957-961 ◽  
Author(s):  
Cai Fang Zhang ◽  
Gen Qiang Jing ◽  
Xin Xin Xu

A modeling analysis and verification of tunable metamaterial absorbers (MA) comprised of a new combination shaped metal elements printed on a dielectric substrate loaded with PIN diodes were presented. Unlike conventional transmission line analysis, new modeling analysis allows arbitrarily shaped elements to be calculated. A qualitative analysis by a simple equivalent circuit model is carried out on the parameters of the tunable MA. Thus, samples of the tunable MA are fabricated. The measured results are in good agreement with the predicted ones. The study shows that the modeling analysis is simple and practicable to describe the working principle of the tunable MA structure.


2021 ◽  
Vol 9 (1) ◽  
pp. 64-68
Author(s):  
Reena Pant, Rakesh Kumar Maurya, Pradyot Kala

This paper presents a combination of an inductive coupling technique and coplanar ground plane microstrip filter. Here, inductive coupling technique is used to overcome the unwanted radiation loss generated by the gap between the co-planar ground plane and the transmission line which improves filter characteristics. A defected ground structure (DGS) is integrated with the proposed filter to achieve a tri-bandpass characteristic (1.85, 3.53, and 5 GHz) without hampering the filter performance. The experimental results of the proposed filter are found in good agreement with simulated results.


2020 ◽  
Vol 9 (2) ◽  
pp. 52-59
Author(s):  
H. A. Hammas ◽  
M. F. Hasan ◽  
A. S. A. Jalal

In this paper, a compact multiband printed antenna is proposed to cover four resonant bands in the range of 1-6 GHz. The antenna structure is inspired from that of the classical multi-cavity magnetron resonator. The antenna comprises a slot annular ring structure in the ground plane of an Isola FR4 substrate having Ԑr = 3.5 and thickness h=1.5 mm. The outer circle of the annular ring is loaded with radial arranged small circular slots. On the opposite side of the substrate, the antenna is fed with a 50-Ohm microstrip line. To investigate the effect of different antenna elements on the antenna performance, a parametric study is conducted. The antenna is simulated, fabricated, and measured. The simulated 10 dB return loss bandwidths for the four resonant bands are 35% (1.53–2.11GHz), 14% (2.9–3.34GHz), 12% (4.2–4.75GHz), and 9% (4.94–5.39GHz), respectively. Thus, the antenna is a proper candidate for many in use bands of wireless systems (1.65, 3.14, 4.44, 5.24 GHz), including LTE-FDD, GNSS, GSM-450, W-CDMA/HSPA/k, 802.11a, and IEEE 802.11ac WLAN. The results indicate that the designed antenna has quad-band resonant responses with substantial frequency ratios of f4/f3, f3/f2 and f2/f1. Besides, the antenna offers reasonable radiation characteristics with a gain of 2.5, 4.0, 6.2, and 4.2 dBi, throughout the four resonant bands.


2018 ◽  
Vol 7 (3) ◽  
pp. 93-98 ◽  
Author(s):  
B. W. Ngobese ◽  
P. Kumar

This paper presents the design, fabrication and measurement of a high gain 4-elements linear patch array, which uses the corporate feed technique with inset for excitation resonating at 5.216 𝐺𝐻z.  is used as a dielectric substrate for the proposed array structure. The designed array is simulated and optimized by using CST microwave studio software. The element of the array is designed using the transmission-line model equations. The ground plane is made defective by incorporating slots and the reflective ground is utilized to enhance the gain of the array. The simulated and measured results for various parameters of the array are presented. The comparison between simulated and measured results show good agreement with little deviation. The optimized dimensions of the proposed design provides a maximum gain of 9.019 dB and a maximum directivity of 12.81 dBi. The antenna has been designed for the range  which is one of the ranges for  band for wireless local area networks (WLAN) applications as the  standard states.


2021 ◽  
Vol 25 (1) ◽  
pp. 11-19
Author(s):  
Mohamed Debab ◽  
◽  
Amina Bendaoudi ◽  
Zoubir Mahdjoub ◽  
◽  
...  

In this article, a dual-band notched ultra-wideband (UWB) dielectric resonator antenna is proposed. The antenna structure consists of Crescent Moon Dielectric Resonator (CMDR) fed by a stepped microstrip monopole printed antenna, partial ground plane, and an I-shaped stub. The Crescent Moon dielectric resonator is placed on the microstrip monopole printed antenna to achieve wide impedance bandwidth, and the I-shaped stub is utilized to improve impedance bandwidth for the WiMAX band. A comprehensive parametric study is carried out using HFSS software to achieve the optimum antenna performance and optimize the bandwidth of the proposed antenna. The entire band is useful with two filtered bands at 5.5 GHz and 6.8 GHz by the creation of notches. The band’s rejection, WLAN band (5.2–5.7 GHz), and the downlink frequency band of ITU 7 GHz-band for satellite communication (6.5–7.3 GHz) is realized by inserting G-shaped and C-shaped slots in the ground. The simulation results demonstrate that the proposed CMDR antenna achieves satisfactory UWB performance, with an impedance bandwidth of around 88.7%, covers the frequency band of 3.2 - 8.3 GHz, excluding a rejection band for the WLAN and ITU 7 GHz band. The CMDR is simulated using HFSS and CST high-frequency simulators.


2016 ◽  
Vol 12 (1) ◽  
pp. 23-29
Author(s):  
Sarthak Singhal ◽  
Nand Verma ◽  
Amit Singh

In this paper, a semi-elliptical annular slot loaded trapezoidal dipole antenna with band-notched characteristics for UWB applications is designed. A microstrip feedline consisting of multiple feedline sections is used for improving the impedance matching. The band-notched characteristics for WLAN band are achieved by loading the trapezoidal dipole arms with semi-elliptical annular slots. The designed antenna structure has an operating range from 3.5-12.4 GHz(109%) with band-rejection in the frequency range of 5-6 GHz. Nearly omnidirectional patterns are achieved for the designed antenna structure. The designed antenna structure provided an average peak gain of 2.12 dB over the entire frequency range except in the notched band where it reduced to -2.4 dB. The experimental and simulation results are observed to be in good agreement. An improved bandwidth performance with miniaturized dimensions as compared to earlier reported antenna structures is achieved.


Sign in / Sign up

Export Citation Format

Share Document