scholarly journals Robust Adaptive Relative Position and Attitude Control for Noncooperative Spacecraft Hovering under Coupled Uncertain Dynamics

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jianghui Liu ◽  
Haiyang Li ◽  
YaKun Zhang ◽  
Jianyong Zhou ◽  
Lin Lu ◽  
...  

The control of body-fixed hovering over noncooperative target, as one of the key problems of relative motion control between spacecrafts, is studied in the paper. The position of the chaser in the noncooperative target’s body coordinate system is required to remain unchanged, and the attitude of the chaser and the target must be synchronized at the same time. Initially, a six-degrees-of-freedom-coupled dynamic model of a chaser relative to a target is established, and relative attitude dynamics is described through using modified Rodrigues parameters (MRP). Considering the model uncertainty and external disturbances of the noncooperative target system, an adaptive nonsingular terminal sliding mode (NTSM) controller is designed. Adaptive tuning method is used to overcome the effects of the model uncertainty and external disturbances. The upper bounds of the model uncertainty and external disturbances are not required to be known in advance. The actual control law is continuous and chatter-free, which is obtained by integrating the discontinuous derivative control signal. Finally, these theoretical results are verified by numerical simulation.

2016 ◽  
Vol 39 (3) ◽  
pp. 371-383 ◽  
Author(s):  
Alireza Modirrousta ◽  
Mahdi Khodabandeh

This paper proposes two different adaptive robust sliding mode controllers for attitude, altitude and position control of a quadrotor. Firstly, it proposes a backstepping non-singular terminal sliding mode control with an adaptive algorithm that is applied to the quadrotor for free chattering, finite time convergence and robust aims. In this control scheme instead of regular control input, the derivative of the control input is achieved from a non-singular terminal second-layer sliding surface. An adaptive tuning method is utilized to deal with the external disturbances whose upper bounds are not required to be known in advance in the inner loop. Secondly, a nonlinear disturbance observer based on the integral sliding mode with adaptive gains is proposed for position control, which is known as the outer loop. Stability and robustness of the proposed controller are proved by using the classical Lyapunov criterion. The simulation results demonstrate the validation of the proposed control scheme.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ruimin Zhang ◽  
Qiaoyu Chen ◽  
Haigang Guo

This paper presents an adaptive nonsingular terminal sliding mode control approach for the attitude control of a hypersonic vehicle with parameter uncertainties and external disturbances based on Chebyshev neural networks (CNNs). First, a new nonsingular terminal sliding surface is proposed for a general uncertain nonlinear system. Then, a nonsingular sliding mode control is designed to achieve finite-time tracking control. Furthermore, to relax the requirement for the upper bound of the lumped uncertainty including parameter uncertainties and external disturbances, a CNN is used to estimate the lumped uncertainty. The network weights are updated by the adaptive law derived from the Lyapunov theorem. Meanwhile, a low-pass filter-based modification is added into the adaptive law to achieve fast and low-frequency adaptation when using high-gain learning rates. Finally, the proposed approach is applied to the attitude control of the hypersonic vehicle and simulation results illustrate its effectiveness.


2013 ◽  
Vol 284-287 ◽  
pp. 2296-2300 ◽  
Author(s):  
Kuang Shine Yang ◽  
Chi Cheng Cheng

The quadrotor helicopter is designed to easily move in particular environments because it can take off and land in limited space and easily hover at a fixed location. For this reason, a robust adaptive sliding mode controller is developed to control of a quadrotor helicopter in the presence of external disturbances and parameter uncertainties. The quadrotor helicopter system is a typical underactuated system, which has fewer independent control actuators than degrees of freedom to be controlled. The main contribution here is to afford simulation and verification for the quadrotor helicopter flight controller under the assumption of unknown parameters. By utilizing the Lyapunov stability theorem, we can achieve asymptotic tracking of desired reference commands for the quadrotor helicopter, which is subject to both external disturbances and parametric uncertainties. From the simulation results, the controller was sufficient to achieve position and attitude control of the quadrotor helicopter system, which permits possible real time applications in the near future.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Naibao He ◽  
Changsheng Jiang ◽  
Bin Jiang ◽  
Qian Gao

A novel flight control scheme is proposed using the terminal sliding mode technique, unidirectional auxiliary surfaces and the disturbance observer model. These proposed dynamic attitude control systems can improve control performance of hypersonic vehicles despite uncertainties and external disturbances. The terminal attractor is employed to improve the convergence rate associated with the critical damping characteristics problem noted in short-period motions of hypersonic vehicles. The proposed robust attitude control scheme uses a dynamic terminal sliding mode with unidirectional auxiliary surfaces. The nonlinear disturbance observer is designed to estimate system uncertainties and external disturbances. The output of the disturbance observer aids the robust adaptive control scheme and improves robust attitude control performance. Finally, simulation results are presented to illustrate the effectiveness of the proposed terminal sliding mode with unidirectional auxiliary surfaces.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 33
Author(s):  
Romina Zarrabi Ekbatani ◽  
Ke Shao ◽  
Jasim Khawwaf ◽  
Hai Wang ◽  
Jinchuan Zheng ◽  
...  

The ionic polymer metal composite (IPMC) actuator is a kind of soft actuator that can work for underwater applications. However, IPMC actuator control suffers from high nonlinearity due to the existence of inherent creep and hysteresis phenomena. Furthermore, for underwater applications, they are highly exposed to parametric uncertainties and external disturbances due to the inherent characteristics and working environment. Those factors significantly affect the positioning accuracy and reliability of IPMC actuators. Hence, feedback control techniques are vital in the control of IPMC actuators for suppressing the system uncertainty and external disturbance. In this paper, for the first time an adaptive full-order recursive terminal sliding-mode (AFORTSM) controller is proposed for the IPMC actuator to enhance the positioning accuracy and robustness against parametric uncertainties and external disturbances. The proposed controller incorporates an adaptive algorithm with terminal sliding mode method to release the need for any prerequisite bound of the disturbance. In addition, stability analysis proves that it can guarantee the tracking error to converge to zero in finite time in the presence of uncertainty and disturbance. Experiments are carried out on the IPMC actuator to verify the practical effectiveness of the AFORTSM controller in comparison with a conventional nonsingular terminal sliding mode (NTSM) controller in terms of smaller tracking error and faster disturbance rejection.


2018 ◽  
Vol 25 (5) ◽  
pp. 1008-1018 ◽  
Author(s):  
Ruidong Yan ◽  
Zhong Wu

There exist complex disturbances in the attitude control system of flexible spacecrafts, such as space environmental disturbances, flexible vibrations, inertia uncertainties, payload motions, etc. To suppress the effects of these disturbances on the performance of attitude stabilization, a super-twisting disturbance observer (STDO)-based nonsingular terminal sliding mode controller (NTSMC) is proposed in this paper. First, STDO is designed for a second-order dynamical system constructed by applying the lumped disturbance and its integral as state variables, and applying the integral as virtual measurement. Since the virtual measurement is obtained by integrating the inverse attitude dynamics, STDO not only avoids the differential operation of angular velocity, but also fully utilizes the information of a nonlinear model. By combining STDO with NTSMC, a composite controller is designed to achieve high-accuracy spacecraft attitude stabilization. Since most of the disturbances are compensated for by a STDO-based feedforward compensator, only a small switching gain is required to deal with the residual disturbances and uncertainties. Thus, the chattering phenomenon of the controller can be alleviated to a great extent. Finally, numerical simulations for the comparison between STDO-based NTSMC and nonlinear disturbance observer-based NTSMC are carried out in the presence of complex disturbances to verify the effectiveness of the proposed approach.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2242
Author(s):  
Pengyu Qiao ◽  
Jun Yang ◽  
Chen Dai ◽  
Xi Xiao

The nonlinearities of piezoelectric actuators and external disturbances of the piezoelectric nanopositioning stage impose great, undesirable influences on the positioning accuracy of nanopositioning stage systems. This paper considers nonlinearities and external disturbances as a lumped disturbance and designs a composite control strategy for the piezoelectric nanopositioning stage to realize ultra-high precision motion control. The proposed strategy contains a composite disturbance observer and a continuous terminal sliding mode controller. The composite disturbance observer can estimate both periodic and aperiodic disturbances so that the composite control strategy can deal with the disturbances with high accuracy. Meanwhile, the continuous terminal sliding mode control is employed to eliminate the chattering phenomenon and speed up the convergence rate. The simulation and experiment results show that the composite control strategy achieves accurate estimation of different forms of disturbances and excellent tracking performance.


Sign in / Sign up

Export Citation Format

Share Document