Robust Adaptive Controller Design for a Quadrotor Helicopter

2013 ◽  
Vol 284-287 ◽  
pp. 2296-2300 ◽  
Author(s):  
Kuang Shine Yang ◽  
Chi Cheng Cheng

The quadrotor helicopter is designed to easily move in particular environments because it can take off and land in limited space and easily hover at a fixed location. For this reason, a robust adaptive sliding mode controller is developed to control of a quadrotor helicopter in the presence of external disturbances and parameter uncertainties. The quadrotor helicopter system is a typical underactuated system, which has fewer independent control actuators than degrees of freedom to be controlled. The main contribution here is to afford simulation and verification for the quadrotor helicopter flight controller under the assumption of unknown parameters. By utilizing the Lyapunov stability theorem, we can achieve asymptotic tracking of desired reference commands for the quadrotor helicopter, which is subject to both external disturbances and parametric uncertainties. From the simulation results, the controller was sufficient to achieve position and attitude control of the quadrotor helicopter system, which permits possible real time applications in the near future.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ruimin Zhang ◽  
Qiaoyu Chen ◽  
Haigang Guo

This paper presents an adaptive nonsingular terminal sliding mode control approach for the attitude control of a hypersonic vehicle with parameter uncertainties and external disturbances based on Chebyshev neural networks (CNNs). First, a new nonsingular terminal sliding surface is proposed for a general uncertain nonlinear system. Then, a nonsingular sliding mode control is designed to achieve finite-time tracking control. Furthermore, to relax the requirement for the upper bound of the lumped uncertainty including parameter uncertainties and external disturbances, a CNN is used to estimate the lumped uncertainty. The network weights are updated by the adaptive law derived from the Lyapunov theorem. Meanwhile, a low-pass filter-based modification is added into the adaptive law to achieve fast and low-frequency adaptation when using high-gain learning rates. Finally, the proposed approach is applied to the attitude control of the hypersonic vehicle and simulation results illustrate its effectiveness.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yu Zhang ◽  
Zheng Fang ◽  
Hongbo Li

Control of quadrotor helicopters is difficult because the problem is naturally nonlinear. The problem becomes more challenging for common model based controllers when unpredictable uncertainties and disturbances in physical control system are taken into account. This paper proposes a novel intelligent controller design based on a fast online learning method called extreme learning machine (ELM). Our neural controller does not require precise system modeling or prior knowledge of disturbances and well approximates the dynamics of the quadrotor at a fast speed. The proposed method also incorporates a sliding mode controller for further elimination of external disturbances. Simulation results demonstrate that the proposed controller can reliably stabilize a quadrotor helicopter in both agitated attitude and position control tasks.


Author(s):  
Brahim Brahmi ◽  
Abdelkrim Brahmi ◽  
Maarouf Saad ◽  
Guy Gauthier ◽  
Mohammad Habibur Rahman

Abstract Rehabilitation robots have become an influential tool in physiotherapy treatment because they are able to provide intensive rehabilitation treatment over a long period of time. However, this technology still suffers from various problems such as dynamic uncertainties, external disturbances, and human–robot interaction. In this paper, we propose a robust adaptive control approach of an exoskeleton robot with an unknown dynamic model and external disturbances. First, the dynamics of the exoskeleton's arm is presented. Then, we design a robust adaptive sliding mode control in which the parameter uncertainties and the disturbances are estimated by the adaptive update methods. The proposed control ensures a good tracking of the system with a finite time convergence of sliding surface to zero. Throughout this paper, the designed control law and the global stability analysis are formulated and demonstrated based on the appropriate choice of the candidate Lyapunov function. The experimental and comparative results, performed for seven degrees-of-freedom (DOFs) exoskeleton arm with three healthy subjects to track a passive rehabilitation motion, confirm the effectiveness and robustness of the proposed control law compared with conventional adaptive approach.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Shijian Cang ◽  
Zenghui Wang ◽  
Zengqiang Chen

Synchronization is very useful in many science and engineering areas. In practical application, it is general that there are unknown parameters, uncertain terms, and bounded external disturbances in the response system. In this paper, an adaptive sliding mode controller is proposed to realize the projective synchronization of two different dynamical systems with fully unknown parameters, uncertain terms, and bounded external disturbances. Based on the Lyapunov stability theory, it is proven that the proposed control scheme can make two different systems (driving system and response system) be globally asymptotically synchronized. The adaptive global projective synchronization of the Lorenz system and the Lü system is taken as an illustrative example to show the effectiveness of this proposed control method.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jianghui Liu ◽  
Haiyang Li ◽  
YaKun Zhang ◽  
Jianyong Zhou ◽  
Lin Lu ◽  
...  

The control of body-fixed hovering over noncooperative target, as one of the key problems of relative motion control between spacecrafts, is studied in the paper. The position of the chaser in the noncooperative target’s body coordinate system is required to remain unchanged, and the attitude of the chaser and the target must be synchronized at the same time. Initially, a six-degrees-of-freedom-coupled dynamic model of a chaser relative to a target is established, and relative attitude dynamics is described through using modified Rodrigues parameters (MRP). Considering the model uncertainty and external disturbances of the noncooperative target system, an adaptive nonsingular terminal sliding mode (NTSM) controller is designed. Adaptive tuning method is used to overcome the effects of the model uncertainty and external disturbances. The upper bounds of the model uncertainty and external disturbances are not required to be known in advance. The actual control law is continuous and chatter-free, which is obtained by integrating the discontinuous derivative control signal. Finally, these theoretical results are verified by numerical simulation.


Author(s):  
Rihab Bkekri ◽  
Anouar Benamor ◽  
Mohamed Amine Alouane ◽  
Georges Fried ◽  
Hassani Messaoud

Purpose Assistive technology products are designed to provide additional accessibility to individuals who have physical or cognitive difficulties, impairments and disabilities. The purpose of this paper is to deal with the control of a knee joint orthosis intended to be used for rehabilitation and assistive purpose; this control aims to reduce the influence of the uncertainties and eliminating the external disturbances in the system. Design/methodology/approach This paper deals with the robust adaptive sliding mode controller (ASMC) of human-driven knee joint orthosis system with mismatched uncertainties and external disturbances. The shank-orthosis system has been modeled and its parameters have been identified. This control reduces the effect of parameter uncertainties and external disturbances on the system performance and improves the system robustness as results. The ASMC was designed to offer the possibility to track the state of the reference model. Moreover, the Lyapunov stability theory was used to study the asymptotical stability of the ASMC. Findings The advantage of the robust ASMC method is the tracking precision and reducing the required time for eliminating external disturbances and uncertainties. The experimental results show in real-time in terms of stability and present that the advantages of this control approach are the position tracking and robustness. Originality/value In this paper, to deal with the parameter uncertainties of the human-driven knee joint orthosis, an ASMC was successfully applied based on sliding mode and Lyapunov stability theory. It has good dynamic response and tracking performance. Besides, the adaptive algorithm is simple, easy to achieve and has good adaptability and robustness against the parameter variations and external disturbances. The design technique is simple and efficient. The development of this control takes into consideration the perturbation, allowing to track a desired trajectory.


Author(s):  
Ming You ◽  
Qun Zong ◽  
Bailing Tian ◽  
Fanlin Zeng

The controller design for reusable launch vehicles is challenging due to enormous amounts of model parameter uncertainties and atmospheric disturbances. This paper first derives six-degree-of-freedom model of a reusable launch vehicle with atmospheric disturbances. Next, four kinds of atmospheric disturbances are introduced and wind models are established respectively. For attitude control of the reusable launch vehicle, a nonsingular terminal sliding mode controller is designed with stability guaranteed. Finally, simulation results show a satisfactory performance for the attitude tracking of the reusable launch vehicle with atmospheric disturbances.


Author(s):  
Umair Javaid ◽  
Hongyang Dong

A disturbance observer-based control scheme is proposed in this paper to deal with the attitude stabilization problems of spacecraft subjected to external disturbances, parameter uncertainties, and input nonlinearities. Particularly, the proposed approach addresses the dead-zone issue, a non-smooth nonlinearity affiliated with control input that significantly increases controller design difficulties. A novel nonlinear disturbance observer (NDO) is developed, which relaxes the strong assumption in conventional NDO design that disturbances should be constants or varying with slow rates. After that, a special integral sliding mode controller (ISMC) is combined with the NDO to achieve asymptotic convergence of system states. Simulations are performed in the presence of time-varying disturbances, parameter uncertainties, and dead-zone nonlinearity to justify the effectiveness of the proposed control scheme.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3653
Author(s):  
Lilia Sidhom ◽  
Ines Chihi ◽  
Ernest Nlandu Kamavuako

This paper proposes an online direct closed-loop identification method based on a new dynamic sliding mode technique for robotic applications. The estimated parameters are obtained by minimizing the prediction error with respect to the vector of unknown parameters. The estimation step requires knowledge of the actual input and output of the system, as well as the successive estimate of the output derivatives. Therefore, a special robust differentiator based on higher-order sliding modes with a dynamic gain is defined. A proof of convergence is given for the robust differentiator. The dynamic parameters are estimated using the recursive least squares algorithm by the solution of a system model that is obtained from sampled positions along the closed-loop trajectory. An experimental validation is given for a 2 Degrees Of Freedom (2-DOF) robot manipulator, where direct and cross-validations are carried out. A comparative analysis is detailed to evaluate the algorithm’s effectiveness and reliability. Its performance is demonstrated by a better-quality torque prediction compared to other differentiators recently proposed in the literature. The experimental results highlight that the differentiator design strongly influences the online parametric identification and, thus, the prediction of system input variables.


Sign in / Sign up

Export Citation Format

Share Document