scholarly journals Amides Derived from Vanillic Acid: Coupling Reactions, Antimicrobial Evaluation, and Molecular Docking

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Ana Júlia de Morais Santos Oliveira ◽  
Ricardo Dias de Castro ◽  
Hilzeth de Luna Freire Pessôa ◽  
Abdul Wadood ◽  
Damião Pergentino de Sousa

A series of amides derived from vanillic acid were obtained by coupling reactions using PyBOP ((Benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate) and DCC (Dicyclohexylcarbodiimide) coupling reagents. These were submitted to biological evaluation for species of Candida, Staphylococcus, and Pseudomonas. The microdilution method in broth was used for the antimicrobial testing to determine the Minimum Inhibitory Concentration (MIC) and to verify the likely mechanism of action for antifungal activity. The ten amides were obtained with yields ranging from 28.81 to 86.44%, and three compounds were novel. In the antibacterial evaluation, the amides (in their greatest concentrations) were bioactive against Staphylococcus aureus strain ATCC 25925. Meanwhile, all of the tested amides presented antifungal activity against at least one strain. The amide with best antifungal profile was compound 7, which featured an MIC of 0.46 μmol/mL, and a mechanism of action involving the plasma membrane and fungal cell wall. The presence of a methyl group in the para position of the aromatic ring is suggested which enhances the activity of the compound against fungi. Docking studies of the ten compounds using the protein 14α-demethylase as a biological target were also performed. The biological results presented good correlation with molecular docking studies demonstrating that a possible site of antifungal action for bioactive amides is the enzyme 14α-demethylase.

2019 ◽  
Vol 19 (13) ◽  
pp. 1145-1161 ◽  
Author(s):  
Victor Kartsev ◽  
Athina Geronikaki ◽  
Anthi Petrou ◽  
Boris Lichitsky ◽  
Marina Kostic ◽  
...  

Background:Griseofulvin - a mold metabolite produced by Penisilium griseofulvum is known as an antifungal drug.Objective:Thus, the goal of this paper is the design and synthesis of new griseofulvin derivatives and evaluation of their antifungal activity.Methods:Forty-two new compounds were synthesized using classical methods of organic synthesis and evaluated for their antimicrobial activity by microdilution method.Results:All forty-two new compounds exhibited very good activity against eight tested micromycetes with MIC ranging from 0.0075-0.055 mg/ml and MFC from 0.02-024 mg/ml. All compounds exhibited better activity than reference drugs ketoconazole (7-42 times) and bifonazole (3-16 fold). The most promising was compound 15. The most sensitive fungal was found to be T. viride, while the most resistant, as was expected, was A. fumigatus. It should be mentioned that most of compounds exhibited better activity than griseofulvin.:The molecular docking studies revealed that the most active compound have the same hydrophobic and H-bonding interactions with Thr276 residue observed for griseofulvin forming 3 hydrogen bonds while griseofulvin only one. In general, the molecular docking results coincide with experimental.Conclusion:Forty-two giseofulvin derivatives were designed, synthesized and evaluated for antimicrobial activity. These derivatives revealed good antifungal activity, better than reference drugs ketoconazole, bifonazole, and griseofulvin as well.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mayara Castro de Morais ◽  
Yunierkis Perez-Castillo ◽  
Valdenizia Rodrigues Silva ◽  
Luciano de Souza Santos ◽  
Milena Botelho Pereira Soares ◽  
...  

Amides derived from ferulic acid have a wide spectrum of pharmacological activities, including antitumor and antifungal activity. In the present study, a series of ten amides were obtained by coupling reactions using the reagents (benzotriazol-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate (PyBOP) and N,N ′ -dicyclohexylcarbodiimide (DCC). All the compounds were identified on the basis of their IR, 1H- and 13C-NMR, HRMS data, and with yields ranging from 43.17% to 91.37%. The compounds were subjected to cytotoxic tests by the alamar blue technique and antifungal screening by the broth microdilution method to determine the minimum inhibitory concentration (MIC). The amides 10 and 11 displayed the best result in both biological evaluations, and compound 10 was the most potent and selective in HL-60 cancer cells, with no cytotoxicity on healthy cells. This amide had antifungal activity in all strains and had the lowest MIC against Candida albicans and Candida tropicalis. The possible mechanism of antifungal action occurs via the fungal cell wall. Molecular modeling suggested that compounds 10 and 11 interact with the enzymes GWT1 and GSC1, which are essential for the development of C. albicans. The findings of the present study demonstrated that compounds 10 and 11 may be used as a platform in drug development in the future.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1964 ◽  
Author(s):  
Volodymyr Horishny ◽  
Victor Kartsev ◽  
Athina Geronikaki ◽  
Vasyl Matiychuk ◽  
Anthi Petrou ◽  
...  

Background: Infectious diseases symbolize a global consequential strain on public health security and impact on the socio-economic stability all over the world. The increasing resistance to the current antimicrobial treatment has resulted in crucial need for the discovery and development of novel entity for the infectious treatment with different modes of action that could target both sensitive and resistant strains. Methods: Compounds were synthesized using classical methods of organic synthesis. Results: All 20 synthesized compounds showed antibacterial activity against eight Gram-positive and Gram-negative bacterial species. It should be mentioned that all compounds exhibited better antibacterial potency than ampicillin against all bacteria tested. Furthermore, 18 compounds appeared to be more potent than streptomycin against Staphylococcus aureus, Enterobacter cloacae, Pseudomonas aeruginosa, Listeria monocytogenes, and Escherichia coli. Three the most active compounds 4h, 5b, and 5g appeared to be more potent against MRSA than ampicillin, while streptomycin did not show any bactericidal activity. All three compounds displayed better activity also against resistant strains P. aeruginosa and E. coli than ampicillin. Furthermore, all compounds were able to inhibit biofilm formation 2- to 4-times more than both reference drugs. Compounds were evaluated also for their antifungal activity against eight species. The evaluation revealed that all compounds exhibited antifungal activity better than the reference drugs bifonazole and ketoconazole. Molecular docking studies on antibacterial and antifungal targets were performed in order to elucidate the mechanism of antibacterial activity of synthesized compounds. Conclusion: All tested compounds showed good antibacterial and antifungal activity better than that of reference drugs and three the most active compounds could consider as lead compounds for the development of new more potent agents.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Yunierkis Perez-Castillo ◽  
Tamires C. Lima ◽  
Alana R. Ferreira ◽  
Cecília R. Silva ◽  
Rosana S. Campos ◽  
...  

Over the last decade, there has been a dramatic increase in the prevalence and gravity of systemic fungal diseases. This study aimed therefore at evaluating the antifungal potential of ester derivatives of benzoic and cinnamic acids from three Candida species. The compounds were prepared via Fischer esterification, and the antifungal assay was performed by the microdilution method in 96-well microplates for determining the minimal inhibitory concentrations (MICs). The findings of the antifungal tests revealed that the analogue compound methyl ferulate, methyl o-coumarate, and methyl biphenyl-3-carboxylate displayed an interesting antifungal activity against all Candida strains tested, with MIC values of 31.25-62.5, 62.5-125, and 62.5 μg/ml, respectively. A preliminary Structure-Activity Relationship study of benzoic and cinnamic acid derivatives has led to the recognition of some important structural requirements for antifungal activity. The results of molecular docking indicate that the presence of the enoate moiety along with hydroxyl and one methoxy substitution in the phenyl ring has a positive effect on the bioactivity of compound 7 against Candida albicans. These observations further support the hypothesis that the antifungal activity of compound 7 could be due to its binding to multiple targets, specifically to QR, TS, and ST-PK. Additional experiments are required in the future to test this hypothesis and to propose novel compounds with improved antifungal activity.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 309
Author(s):  
Michelyne Haroun ◽  
Christophe Tratrat ◽  
Aggeliki Kolokotroni ◽  
Anthi Petrou ◽  
Athina Geronikaki ◽  
...  

In this study, we report the design, synthesis, computational and experimental evaluation of the antimicrobial activity, as well as docking studies of new 5-methylthiazole based thiazolidinones. All compounds demonstrated antibacterial efficacy, some of which (1,4,10 and 13) exhibited good activity against E. coli and B. cereus. The evaluation of antibacterial activity against three resistant strains, MRSA, P. aeruginosa and E. coli, revealed that compound 12 showed the best activity, higher than reference drugs ampicillin and streptomycin, which were inactive or exhibited only bacteriostatic activity against MRSA, respectively. Ten out of fifteen compounds demonstrated higher potency than reference drugs against a resistant strain of E. coli, which appeared to be the most sensitive species to our compounds. Compounds 8, 13 and 14 applied in a concentration equal to MIC reduced P. aeruginosa biofilm formation by more than 50%. All compounds displayed antifungal activity, with compound 10 being the most active. The majority of compounds showed better activity than ketoconazole against almost all fungal strains. In order to elucidate the mechanism of antibacterial and antifungal activities, molecular docking studies on E. coli Mur B and C. albicans CYP51 and dihydrofolate reductase were performed. Docking analysis of E. coli MurB indicated a probable involvement of MurB inhibition in the antibacterial mechanism of tested compounds while docking to 14α-lanosterol demethylase (CYP51) and tetrahydrofolate reductase of Candida albicans suggested that probable involvement of inhibition of CYP51 reductase in the antifungal activity of the compounds. Potential toxicity toward human cells is also reported.


2013 ◽  
Vol 22 (11) ◽  
pp. 5256-5266 ◽  
Author(s):  
Vikas Garg ◽  
Ankit Kumar ◽  
Anurag Chaudhary ◽  
Saurabh Agrawal ◽  
Praveen Tomar ◽  
...  

Author(s):  
M. Sathish Kumar ◽  
M. Vijey Aanandhi

The fused pyrimidine derivatives are potent tyrosine kinase and thymidylate synthase inhibitors. The compound 3-(4-sulphonyl amino)-2-methyl thio-6-phenyl azo-5, 7-dimethyl pyrido(2,3-d)pyrimidin-4-one was synthesized from Ethyl 2-amino-4,6-dimethylpyridine-3-carboxylate, benzene diazonium chloride, benzene sulphonyl amino isothiocyanate in subsequent reactions. 1-(1, 3-benzothiazol-2-yl)-3-methyl-4-phenyl-1H-pyrazolo[3,4-d]pyrimidines were synthesized from 1, 3-benzothiazole, 2-thiol, Hydrazine Hydrate, 2-hydrazinyl-1, 3-benzothiazole and aldehydes in subsequent reactions. Twenty-five derivatives pyrimidine scaffolds were designed and performed molecular docking studies for the ability to inhibit the target protein using molecular docking simulation, selective compounds were synthesized and characterized by spectral methods. All the synthesized compounds evaluated for their antioxidant activity and MTT assay exhibited compounds 13c, 13e and 14d can be potential anticancer candidates against MCF-7, Hep G2 and Hela cell lines respectively. Based on all the studies conclude that good agreement was observed between the top-ranked docking scores and top experimental inhibitors when compared with standards ascorbic acid and imatinib. Hence, the compounds could be considered as new anticancer hits for further lead optimization.


Sign in / Sign up

Export Citation Format

Share Document