scholarly journals A Vibration-Related Design Parameter Optimization Method for High-Speed Elevator Horizontal Vibration Reduction

2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Lemiao Qiu ◽  
Zili Wang ◽  
Shuyou Zhang ◽  
Lichun Zhang ◽  
Jie Chen

High-speed elevator horizontal vibration (HsEHV) is a problem that seriously affects ride comfort. To solve this problem, a design parameter optimization method for HsEHV reduction was studied. A dynamic equation of HsEHV was established, and its response value was calculated using a precise integration method. The influence of the design parameters on horizontal vibration was also analyzed. An optimization model of the design parameters for HsEHV reduction was constructed, and the response surface model of objective function (the peak-to-peak value of horizontal vibration acceleration) was constructed using Latin hypercube sampling. We adopted a multiobjective genetic algorithm to optimize the design parameters for horizontal vibration reduction and used the min-max standardization method to select an optimal solution set. Finally, a KLK2 high-speed elevator made by Canny Elevator Co., Ltd., was utilized as an example to analyze the influencing factors of HsEHV, optimize the design parameters to reduce horizontal vibration, and verify the optimized results using numerical calculation and prototype testing.

Author(s):  
Zijian Guo ◽  
Tanghong Liu ◽  
Wenhui Li ◽  
Yutao Xia

The present work focuses on the aerodynamic problems resulting from a high-speed train (HST) passing through a tunnel. Numerical simulations were employed to obtain the numerical results, and they were verified by a moving-model test. Two responses, [Formula: see text] (coefficient of the peak-to-peak pressure of a single fluctuation) and[Formula: see text] (pressure value of micro-pressure wave), were studied with regard to the three building parameters of the portal-hat buffer structure of the tunnel entrance and exit. The MOPSO (multi-objective particle swarm optimization) method was employed to solve the optimization problem in order to find the minimum [Formula: see text] and[Formula: see text]. Results showed that the effects of the three design parameters on [Formula: see text] were not monotonous, and the influences of[Formula: see text] (the oblique angle of the portal) and [Formula: see text] (the height of the hat structure) were more significant than that of[Formula: see text] (the angle between the vertical line of the portal and the hat). Monotonically decreasing responses were found in [Formula: see text] for [Formula: see text] and[Formula: see text]. The Pareto front of [Formula: see text] and[Formula: see text]was obtained. The ideal single-objective optimums for each response located at the ends of the Pareto front had values of 1.0560 for [Formula: see text] and 101.8 Pa for[Formula: see text].


2020 ◽  
Vol 20 (03) ◽  
pp. 2050031
Author(s):  
Qiang Han ◽  
Xuan Zhang ◽  
Kun Xu ◽  
Xiuli Du

The optimum design of distributed tuned mass dampers (DTMDs) is normally based on predefined restrictions, such as the location and/or mass ratio of the tuned mass dampers (TMDs). To further improve the control performance, a free parameter optimization method (FPOM) is proposed. This method only restricts the total mass of the DTMDs system and takes the installation position, mass ratio, stiffness and damping of each TMD as parameters to be optimized. An improved hybrid genetic-simulated annealing algorithm (IHGSA) is adopted to find the optimum values of the design parameters. This algorithm can solve the non-convexity and multimodality problems of the objective function and is quite effective in dealing with the large amount of computations in the free parameter optimization. A numerical benchmark model is adopted to compare the control efficiency of FPOM with conventional control scenarios, such as single TMD, multiple TMDs and DTMDs optimized through conventional methods. The results show that the DTMDs system optimized by using FPOM is superior to the other control scenarios for the same value of mass ratio.


2020 ◽  
Vol 21 (5) ◽  
pp. 502
Author(s):  
Chen Chen ◽  
Ruijun Zhang ◽  
Qing Zhang ◽  
Lixin Liu

Aiming at the phenomenon that the elevator car system generates horizontal vibration due to the unevenness of the guide rail and the guide shoe modeling uncertainty caused by friction, wear and spring aging between the rolling guide shoe and the guide rail, a mixed H2/H∞ optimal guaranteed cost state feedback control strategy is proposed. Firstly, as the high-speed elevator car system always exist the phenomenon of stiffness and damping uncertainty in the guide shoe, the LFT method is adopted to construct the state space equation of the car system with parameter uncertainty. Secondly, considering the performance indexes of horizontal acceleration at the center of the car floor and the guide shoe vibration displacement system, an optimal guaranteed performance state feedback controller is designed based on the linear convex optimization method, which to minimize H2 performance index and achieve the specified H∞ performance level. Thirdly, the free matrix is introduced to reduce the conservatism of the controller. Finally, by comparing the simulation results with other control methods under the same conditions, it is verified that the control strategy can make the car system have better vibration suppression ability, and can significantly improve the ride comfort of the elevator.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaomeng Yin ◽  
Xing Wei ◽  
Lei Liu ◽  
Yongji Wang

With respect to the nonlinear hypersonic vehicle (HV) dynamics, achieving a satisfactory tracking control performance under uncertainties is always a challenge. The high-order sliding mode control (HOSMC) method with strong robustness has been applied to HVs. However, there are few methods for determining suitable HOSMC parameters for an efficacious control of HV, given that the uncertainties are randomly distributed. In this study, we introduce a hybrid fireworks algorithm- (FWA-) based parameter optimization into HV control design to satisfy the design requirements with high probability. First, the complex relation between design parameters and the cost function that evaluates the likelihood of system instability and violation of design requirements is modeled via stochastic robustness analysis. Subsequently, we propose an efficient hybrid FWA to solve the complex optimization problem concerning the uncertainties. The efficiency of the proposed hybrid FWA-based optimization method is demonstrated in the search of the optimal HV controller, in which the proposed method exhibits a better performance when compared with other algorithms.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Gang Han ◽  
Fugui Xie ◽  
Xin-Jun Liu ◽  
Qizhi Meng ◽  
Sai Zhang

Abstract Parameters optimization is complicated by various parameters and nonlinear design problems. In this paper, the interaction mechanism of motion/force transmissibility and various parameters on normalized motor torque and speed of a four degrees-of-freedom (4-DOF) high-speed parallel robot is analyzed. Based on this interaction mechanism, evaluation indices of acceleration capacity, speed ability, and adept cycle time are proposed. Through combining these indices with task requirements and technical criteria of driving systems, the technology-oriented constraints are set up and a parameter optimization method is proposed. With this method, the dimensional parameters, driving system specifications, and work pose of the robot have been synchronously optimized to ensure low driving torque and high pick-and-place frequency. This synchronous optimal design method is general and can be further applied to parameter optimization for different types of parallel robots.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Wei Wang ◽  
Mu Niu ◽  
Yuling Song

In order to integrally control the vibration of in-wheel motor- (IWM-) suspensions coupling system of an electric vehicle, a novel nonlinear dynamics model of the coupling system, which consists of the motor magnetic gap (MMG), is established. Synthesizing subtargets of the vertical vibration acceleration of bodywork, the vertical deformation of tire, the suspension travel, and the vertical fluctuation of MMG, a composite optimization mathematical model is set up. Based on artificial fish swarm algorithm (AFSA), a novel dynamics parameter optimization method is proposed to search the optimal parameter combination existing in the nonlinear dynamics model. Simulation analyses demonstrate that the proposed optimization method is superior to genetic algorithm (GA) under the same optimization conditions, and it can significantly decrease the fluctuation of MMG and improve ride comfort.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401881966
Author(s):  
Dong-wook Kim ◽  
Jung-Hyun Woo ◽  
Kyoung-Su Park

Worldwide, high-speed rail is becoming an increasingly popular and efficient means of transport. However, increasing the speed of a train leads to major reductions in stability and ride comfort. Here, we develop a tubular permanent magnet actuator to overcome these problems. To increase actuator thrust, the electromagnetic circuit requires a high current and, thus, becomes hot. We use a water cooling system with 12 straight copper channels to reduce the temperature. We calculate heat transfer coefficients using empirical convection correlations between laminar flow in the channels and experimental results. The predicted, tube surface temperatures correlated well with the experimental data. We evaluated the effects of flow rate and initial water temperature on various design parameters. The cooling system allowed application of a current greater than 100 A, developing a thrust force of over 8000 N. Thus, the system was robust under harsh operating conditions. We measured the thrust and cogging forces and the performance of the water cooling system in terms of the maximum acceptable temperature. The thrust was high and the cogging torque was low, greatly reducing lateral vibration; the temperature remained below the acceptable maximum.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiuli Xu ◽  
Kewei Shi ◽  
Xuehong Li ◽  
Zhijun Li ◽  
Rengui Wang ◽  
...  

To study the effects of the fatigue performance due to the major design parameter of the orthotropic steel deck and to obtain a better design parameter, a construction parameter optimization method based on a backpropagation neural network (BPNN) and simulated annealing (SA) algorithm was proposed. First, the finite element (FE) model was established, and the numerical results were validated against available full-scale fatigue experimental data. Then, by calculating the influence surface of each fatigue detail, the most unfavorable loading position of each fatigue detail was obtained. After that, combined with the data from actual engineering applications, the weight coefficient of each fatigue detail was calculated by an analytic hierarchy process (AHP). Finally, to minimize the comprehensive stress amplitude, a BPNN and SA algorithm were used to optimize the construction parameters, and the optimization results for the conventional weight coefficients were compared with the construction parameters. It can be concluded that compared with the FE method through single-parameter optimization, the BPNN and SA method can synthetically optimize multiple parameters. In addition, compared with the common weighting coefficients, the weighting coefficients proposed in this paper can be better optimized for vulnerable parts. The optimized fatigue detail stress amplitude is minimized, and the optimization results are reliable. For these reasons, the parameter optimization method presented in this paper can be used for other similar applications.


Author(s):  
Lijiao Xu ◽  
Nan Chen

This work presents the nonlinear dynamic characteristics and vibration reduction of a numerical control power turret three-stage gear transmission system composed of four spur gears. Considering translational and rotational motions, the nonlinear lumped-parameter and multi-degrees of freedom models of modified and unmodified transmission systems are introduced to study the dynamic behavior while the time-varying mesh stiffness and backlash of gear mesh pairs are involved as internal excitations. For the requirement of high speed and low vibration, high contact ratio by modifying design parameters is suggested in this study. By numerical method, the dynamic vibration responses are calculated. Results in the time and frequency domains show that the vibration amplitudes and mesh forces are efficiently decreased after modification. The influences of key parameters, such as mesh stiffness, damping, backlash, and torque on the dynamic response are also studied here. To demonstrate the effectiveness of the proposed model, the vibration tests are conducted by two physical prototypes of the power turret. The values of vibration acceleration at different tests points and speeds are obtained and analyzed. Experimental results validate that the vibration of turret is decreased by the design improvement of gear system.


Sign in / Sign up

Export Citation Format

Share Document