scholarly journals Optimized Scheme to Secure IoT Systems Based on Sharing Secret in Multipath Protocol

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fatna El Mahdi ◽  
Ahmed Habbani ◽  
Zaid Kartit ◽  
Bachir Bouamoud

Internet of Things (IoT) is a hot and emerging topic nowadays. In the world of today, all kinds of devices are supposed to be connected and all types of information are exchanged. This makes human daily life easier and much more intelligent than before. However, this life mode is vulnerable to several security threats. In fact, the mobile networks, by nature, are more exposed to malicious attacks that may read confidential information and modify or even drop important data. This risk should be taken in consideration prior to any construction of mobile networks especially in the coming 5G technology. The present paper aims to provide a contribution in securing such kinds of environment by proposing a new protocol that can be implemented in ad hoc networks.

2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Muhammad Haleem Junejo ◽  
Ab Al-Hadi Ab Rahman ◽  
Riaz Ahmed Shaikh ◽  
Kamaludin Mohamad Yusof ◽  
Imran Memon ◽  
...  

The Internet of things (IoT) and advancements of wireless technology have evolved intelligent transport systems to integrate billion of smart objects ready to connect to the Internet. The modern era of the Internet of things (IoT) has brought significant development in vehicular ad hoc networks (VANETs) which transformed the conventional VANET into the Internet of Vehicle (IoV) to improve road safety and diminished road congestion. However, security threats are increasing due to dependency on infrastructure, computing, dynamic nature, and control technologies of VANET. The security threats of VANETs could be addressed comprehensively by increasing trustworthiness on the message received and transmitting node. Conversely, the presence of dishonest vehicles, for instance, Man in the Middle (MiTM) attackers, in the network sharing malicious content could be posed as a severe threat to VANET. Thus, increasing trustworthiness among nodes can lead to increased authenticity, privacy, accuracy, security, and trusted information sharing in the VANET. In this paper, a lightweight trust model is proposed, presented model identifying dishonest nodes and revoking its credential in the MiTM attack scenario. Furthermore, addressing the privacy and security requirement, the pseudonym scheme is used. All nodes in the VANET established trust provided by initially RSU, which is a trusted source in the network. Extensive experiments are conducted based on a variety of network scenarios to evaluate the accuracy and performance of the presented lightweight trust model. In terms of recall, precision, and F-score, our presented model significantly outperformed compared to MARINE. The simulation results have validated that the proposed lightweight model realized a high trust level with 40% of MiTM attackers and in terms of F-score 95%, whereas the MARINE model has 90%, which leads to the model to attain high detection accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3257
Author(s):  
Arne Bochem ◽  
Benjamin Leiding

Today, increasing Internet of Things devices are deployed, and the field of applications for decentralized, self-organizing networks keeps growing. The growth also makes these systems more attractive to attackers. Sybil attacks are a common issue, especially in decentralized networks and networks that are deployed in scenarios with irregular or unreliable Internet connectivity. The lack of a central authority that can be contacted at any time allows attackers to introduce arbitrary amounts of nodes into the network and manipulate its behavior according to the attacker’s goals, by posing as a majority participant. Depending on the structure of the network, employing Sybil node detection schemes may be difficult, and low powered Internet of Things devices are usually unable to perform impactful amounts of work for proof-of-work based schemes. In this paper, we present Rechained, a scheme that monetarily disincentivizes the creation of Sybil identities for networks that can operate with intermittent or no Internet connectivity. We introduce a new revocation mechanism for identities, tie them into the concepts of self-sovereign identities, and decentralized identifiers. Case-studies are used to discuss upper- and lower-bounds for the costs of Sybil identities and, therefore, the provided security level. Furthermore, we formalize the protocol using Colored Petri Nets to analyze its correctness and suitability. Proof-of-concept implementations are used to evaluate the performance of our scheme on low powered hardware as it might be found in Internet of Things applications.


Author(s):  
Mamata Rath ◽  
Bibudhendu Pati ◽  
Jhum Swain

With faster expansion of mobile networks and quicker increment of web clients, more individuals approach worldwide data and communication innovation, because of which the issues of utilizing web as a worldwide stage and empowering the savvy protests and machines to coordinate, discuss, register, and ascertain slowly develops. In mobile ad-hoc networks (MANETs) and vehicular ad-hoc networks (VANET), the mobile stations and vehicles are self-reconfigurable as per the difference in network topology. Joint action between convenient centers is more basic because of the way that they confront significant difficulties, for example, frailty to work securely while protecting its advantages and performing secure guiding among center points. In the presence of vindictive hubs, one of the rule challenges in MANET is to plot ground-breaking security course of action that can shield MANET from different routing assaults.


Author(s):  
Phan Cong-Vinh

In mobile environments (MEs) such as vehicular ad hoc networks (VANETs), mobile ad hoc networks (MANETs), wireless sensor networks (WSNs), and so on, formal specification of self-configuring P2P networking (SPN) emerges as a need for programming, and verifying such mobile networks. Moreover, well-specified SPN in MEs becomes a requirement of developing middleware for the mobile networks. The chapter is a reference material for readers who already have a basic understanding of the MEs for their applications and are now ready to know how to specify and verify formally aspect-oriented self-configuring P2P networking (ASPN) in MEs using categorical language, assured that their computing needs are handled correctly and efficiently. ASPN in MEs is presented in a straightforward fashion by discussing in detail the necessary components and briefly touching on the more advanced components. Several explanatory notes and examples are represented throughout the chapter as a moderation of the formal descriptions. Significant properties of ASPN in MEs, which emerge from the specification, create the firm criteria for verification.


2018 ◽  
Vol 52 (8) ◽  
pp. 993-999 ◽  
Author(s):  
P. D. Zegzhda ◽  
D. V. Ivanov ◽  
D. A. Moskvin ◽  
G. S. Kubrin

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Linsheng Ye ◽  
Linghe Kong ◽  
Kayhan Zrar Ghafoor ◽  
Guihai Chen ◽  
Shahid Mumtaz

The Industrial Internet of Things (IIoT) is the use of Internet of Things (IoT) technologies in manufacturing. The vehicular ad hoc networks (VANETs) are a typical application of IIoT. Benefiting from Dedicated Short-Range Communication (DSRC) technology, vehicles can communicate with each other through wireless manner. Therefore, road safety is able to be greatly improved by the broadcast of safety messages, which contain vehicle’s real-time speed, position, direction, etc. In existing DSRC, safety messages are broadcasted at a fixed frequency by default. However, traffic conditions are dynamic. In this way, there are too many transmission collisions when vehicles are too dense and the wireless channel is underused when vehicles are too sparse. In this paper, we address broadcast congestion issue in DSRC and propose lightweight adaptive broadcast (LAB) control for DSRC safety message. The objectives of LAB are to make full use of DSRC channel and avoid congestion. LAB meets two key challenges. First, it is hard to adopt a centralized method to control the communication parameters of distributed vehicles. Furthermore, the vehicle cannot easily acquire the channel conditions of other vehicles. To overcome these challenges, channel condition is attached with safety messages in LAB and broadcast frequency is adapted according to neighboring vehicles’ channel conditions. To evaluate the performance of LAB, we conduct extensive simulations on different roads and different vehicle densities. Performance results demonstrate that LAB effectively adjusts the broadcast frequency and controls the congestion.


This research paper proposes the “mobile ad hoc networks (MANETs) need aid autonomously self-organized networks without framework backing”. For a “mobile ad hoc network, nodes move arbitrarily”; consequently that network might background fast also random topology changes.In view nodes previously, a MANET regularly have set transmission ranges, a percentage node can't correspond specifically with one another. Hence, routing path in mobile networks possibly hold numerous hops, each hub to mobile networks need the obligation on go about as a switch. This paper is an review from research work on “routing protocol for MANET, Mobile Ad Hoc Network” has as of late increased a ton of fame among computer researchers and specialists. “A MANET is an infrastructure less network” with a lot of dynamic, versatile and self-arranging hubs. Intrigue and utilization of remote versatile network have been becoming in the course of the most recent couple of years.MANETs to have a productive multicast directing and a Quality of Service (QoS) component.Multicast for Ad hoc Network with Hybrid Swarm Intelligence convention depends on swarm insight based optimization technique.


Sign in / Sign up

Export Citation Format

Share Document