scholarly journals Flufenamic Acid Inhibits Adipogenic Differentiation of Mesenchymal Stem Cells by Antagonizing the PI3K/AKT Signaling Pathway

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xuenan Liu ◽  
Zheng Li ◽  
Hao Liu ◽  
Yuan Zhu ◽  
Dandan Xia ◽  
...  

Objectives. Flufenamic acid (FFA) is a representative of the fenamic acids, an important group of NSAIDs. In the present study, we study the effects of FFA on adipogenesis of human mesenchymal stem cells (MSCs) and we explore the potential mechanism. Methods. To investigate the effects of FFA on adipogenic differentiation of hMSCs, human adipose-derived stem cells (hASCs) and human bone marrow mesenchymal stem cells (hBMMSCs), representative of hMSCs, were treated with FFA during adipogenic differentiation in vitro. The effects of FFA in vivo were evaluated using a heterotopic adipose formation assay in nude mice as well as ovariectomized (OVX) and aged mice. To explore the mechanism of FFA, Western blot was used to determine activation of the PI3K/AKT signaling pathway. Results. Our results demonstrate that, at certain concentrations, FFA inhibited adipogenesis of human MSCs both in vitro and in vivo. Mechanistically, FFA inhibited adipogenesis of human MSCs by inhibiting the PI3K/AKT pathway. Conclusions. The present study indicated that FFA could be used to inhibit adipogenesis of human MSCs in tissue engineering and diseases related to excessive adipogenic differentiation of MSCs.

2020 ◽  
Vol 29 ◽  
pp. 096368972092999 ◽  
Author(s):  
Guanghui Xiu ◽  
Xiuling Li ◽  
Yunyu Yin ◽  
Jintao Li ◽  
Bingqin Li ◽  
...  

Mesenchymal stem cells (MSCs) are thought to have great potential in the therapy of acute liver injury. It is possible that these cells may be regulated by the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) signaling axis, which has been shown to promote stem cells migration in the inflammation-associated diseases. However, the effects of SDF-1/CXCR4 axis on the MSCs-transplantation-based treatment for acute liver injury and the underlying mechanisms are largely unknown. In this study, we sought to determine whether SDF-1/CXCR4 would augment the therapeutic effect of bone marrow mesenchymal stem cells (BMSCs) by promoting their migration, which may result from activating the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, in a rat acute liver injury model induced by lipopolysaccharide (LPS). We found that BMSCs transplantation markedly attenuated liver injury and improved the survival of LPS-treated rats. Of interest, overexpression of CXCR4 in BMSCs could substantially promote their migration both in vitro and in vivo, and result in even better therapeutic effects. This might be attributed to the activation of PI3K/Akt signaling pathway in BMSCs that is downstream of CXCR4, as demonstrated by the use of the CXCR4 antagonist AMD3100 and PI3K pathway inhibitor LY294002 assays in vitro and in vivo. Together, our results unraveled a novel molecular mechanism for the therapeutic effect of BMSCs for the treatment of acute liver injury, which may shed a new light on the clinical application of BMSCs for acute liver failure.


Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


2018 ◽  
Vol 132 (6) ◽  
pp. 685-699 ◽  
Author(s):  
Zhen-Guo Ma ◽  
Xin Zhang ◽  
Yu-Pei Yuan ◽  
Ya-Ge Jin ◽  
Ning Li ◽  
...  

T-cell infiltration and the subsequent increased intracardial chronic inflammation play crucial roles in the development of cardiac hypertrophy and heart failure (HF). A77 1726, the active metabolite of leflunomide, has been reported to have powerful anti-inflammatory and T cell-inhibiting properties. However, the effect of A77 1726 on cardiac hypertrophy remains completely unknown. Herein, we found that A77 1726 treatment attenuated pressure overload or angiotensin II (Ang II)-induced cardiac hypertrophy in vivo, as well as agonist-induced hypertrophic response of cardiomyocytes in vitro. In addition, we showed that A77 1726 administration prevented induction of cardiac fibrosis by inhibiting cardiac fibroblast (CF) transformation into myofibroblast. Surprisingly, we found that the protective effect of A77 1726 was not dependent on its T lymphocyte-inhibiting property. A77 1726 suppressed the activation of protein kinase B (AKT) signaling pathway, and overexpression of constitutively active AKT completely abolished A77 1726-mediated cardioprotective effects in vivo and in vitro. Pretreatment with siRNA targetting Fyn (si Fyn) blunted the protective effect elicited by A77 1726 in vitro. More importantly, A77 1726 was capable of blocking pre-established cardiac hypertrophy in mice. In conclusion, A77 1726 attenuated cardiac hypertrophy and cardiac fibrosis via inhibiting FYN/AKT signaling pathway.


2019 ◽  
Vol 10 (2) ◽  
pp. 592-601 ◽  
Author(s):  
Xiang Li ◽  
Ze-sheng Zhang ◽  
Xiao-han Zhang ◽  
Sheng-nan Yang ◽  
Dong Liu ◽  
...  

Anthocyanins have been shown to exhibit antitumor activity in several cancersin vitroandin vivo.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Changsheng Nai ◽  
Haochen Xuan ◽  
Yingying Zhang ◽  
Mengxiao Shen ◽  
Tongda Xu ◽  
...  

The flavonoid luteolin exists in many types of fruits, vegetables, and medicinal herbs. Our previous studies have demonstrated that luteolin reduced ischemia/reperfusion (I/R) injury in vitro, which was related with sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) activity. However, the effects of luteolin on SERCA2a activity during I/R in vivo remain unclear. To investigate whether luteolin exerts cardioprotective effects and to monitor changes in SERCA2a expression and activity levels in vivo during I/R, we created a myocardial I/R rat model by ligating the coronary artery. We demonstrated that luteolin could reduce the myocardial infarct size, lactate dehydrogenase release, and apoptosis during I/R injury in vivo. Furthermore, we found that luteolin inhibited the I/R-induced decrease in SERCA2a activity in vivo. However, neither I/R nor luteolin altered SERCA2a expression levels in myocardiocytes. Moreover, the PI3K/Akt signaling pathway played a vital role in this mechanism. In conclusion, the present study has confirmed for the first time that luteolin yields cardioprotective effects against I/R injury by inhibiting the I/R-induced decrease in SERCA2a activity partially via the PI3K/Akt signaling pathway in vivo, independent of SERCA2a protein level regulation. SERCA2a activity presents a novel biomarker to assess the progress of I/R injury in experimental research and clinical applications.


Sign in / Sign up

Export Citation Format

Share Document