scholarly journals Influence of Titanium Alloy Scaffolds on Enzymatic Defense against Oxidative Stress and Bone Marrow Cell Differentiation

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Lais Morandini Rodrigues ◽  
Elis Andrade Lima Zutin ◽  
Elisa Mattias Sartori ◽  
Daniela Baccelli Silveira Mendonça ◽  
Gustavo Mendonça ◽  
...  

Studies have been directed towards the production of new titanium alloys, aiming for the replacement of Ti-6 Aluminium-4 Vanadium (TiAlV) alloy in the future. Many mechanisms related to biocompatibility and chemical characteristics have been studied in the field of implantology, but enzymatic defenses against oxidative stress remain underexplored. Bone marrow stromal cells have been explored as source of cells, which have the potential to differentiate into osteoblasts and therefore could be used as cells-based therapy. The objective of this study was to evaluate the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in porous scaffolds of Ti-6 Aluminium-4 Vanadium (TiAlV), Ti-35 Niobium (TiNb), and Ti-35 Niobium-7 Zirconium-5 Tantalum (TiNbZrTa) on mouse bone marrow stromal cells. Porous titanium alloy scaffolds were prepared by powder metallurgy. After 24 hours, cells plated on the scaffolds were analyzed by scanning electron microscopy (SEM). The antioxidant enzyme activity was measured 72 hours after cell plating. Quantitative real time PCR (qRT-PCR) was performed after 3, 7, and 14 days, and Runx2 (Runt-related transcription factor2) expression was evaluated. The SEM images showed the presence of interconnected pores and growth, adhesion, and cell spreading in the 3 scaffolds. Although differences were noted for SOD and CAT activity for all scaffolds analyzed, no statistical differences were observed (p>0.05). The osteogenic gene Runx2 presented high expression levels for TiNbZrTa at day 7, compared to the control group (TiAlV day 3). At day 14, all scaffolds had more than 2-fold induction for Runx2 mRNA levels, with statistically significant differences compared to the control group. Even though we were not able to confirm statistically significant differences to justify the replacement of TiAlV regarding antioxidant enzymes, TiNbZrTa was able to induce faster bone formation at early time points, making it a good choice for biomedical and tissue bioengineering applications.

2012 ◽  
Vol 92 (9) ◽  
pp. 1208-1219 ◽  
Author(s):  
Cheng Zhong ◽  
Xin Zhang ◽  
Zhengjian Xu ◽  
Rongxin He

Background Electromagnetic fields (EMFs) used in stem-cell tissue engineering can help elucidate their biological principles. Objective The aim of this study was to investigate the effects of low-intensity EMFs on cell proliferation, differentiation, and cycle in mouse bone marrow stromal cells (BMSCs) and the in vivo effects of EMFs on BMSC. Methods Harvested BMSCs were cultured for 3 generations and divided into 4 groups. The methylthiotetrazole (MTT) assay was used to evaluate cell proliferation, and alkaline phosphatase activity was measured via a colorimetric assay on the 3rd, 7th, and 10th days. Changes in cell cycle also were analyzed on the 7th day, and bone nodule formation was analyzed on the 12th day. Additionally, the expression of the collagen I gene was examined by reverse transcription-polymerase chain reaction (RT-PCR) on the 10th day. The BMSCs of the irradiated group and the control group were transplanted into cortical bone of different mice femurs separately, with poly(lactic-co-glycolic acid) (PLGA) serving as a scaffold. After 4 and 8 weeks, bone the bone specimens of mice were sliced and stained by hematoxylin and eosin separately. Results The results showed that EMFs (0.5 mT, 50 Hz) accelerated cellular proliferation, enhanced cellular differentiation, and increased the percentage of cells in the G2/M+S (postsynthetic gap 2 period/mitotic phase + S phase) of the stimulation. The EMF-exposed groups had significantly higher collagen I messenger RNA levels than the control group. The EMF + osteogenic medium–treated group readily formed bone nodules. Hematoxylin and eosin staining showed a clear flaking of bone tissue in the irradiated group. Conclusion Irradiation of BMSCs with low-intensity EMFs (0.5 mT, 50 Hz) increased cell proliferation and induced cell differentiation. The results of this study did not establish a stricter animal model for studying osteogenesis, and only short-term results were investigated. Further study of the mechanism of EMF is needed.


2021 ◽  
pp. 153537022110101
Author(s):  
Zhe Liu ◽  
Xuanjia Dong ◽  
Zhijie Cao ◽  
Shaowei Qiu ◽  
Yihui Li ◽  
...  

Alternative splicing (AS) is a critical regulatory process of gene expression. In bone marrow microenvironment, AS plays a critical role in mesenchymal stem cells fate determination by forming distinct isoforms of important regulators. As a spliceosome factor, U2AF1 is essential for the catalysis of pre-mRNA splicing, and its mutation can cause differential AS events. In the present study, by forced expression of mutant U2AF1 (U2AF1S34F) in the mouse bone marrow stroma OP9 cells, we determine AS changes in U2AF1S34F transduced OP9 cells and investigate their role in stroma cell biological functions. We find that abundant differential RNA splicing events are induced by U2AF1S34F in OP9 cells. U2AF1S34F causes increased generation of hydrogen peroxide, promotes production of cytokines and chemokines. U2AF1S34F transduced OP9 cells also exhibit dysfunction of mitochondria. RNA-seq data, gene ontology (GO), and gene set enrichment analysis reveal that differentially expressed genes downregulated in response to U2AF1S34F are enriched in peroxisome component and function. U2AF1S34F can also cause release of hydrogen peroxide from OP9 cells. Furthermore, we investigate the influence of U2AF1S34F-induced oxidative stress in stromal cells on hematopoietic cells. When co-culturing mouse bone marrow mononuclear cells with OP9 cells, the U2AF1S34F expressing OP9 cells induce phosphorylation of histone H2AX in hematopoietic cells. Collectively, our results reveal that mutant U2AF1-induced differential AS events cause oxidative stress in bone marrow stromal cells and can further lead to DNA damage and genomic instability in hematopoietic cells.


2003 ◽  
Vol 21 (2) ◽  
pp. 121-132 ◽  
Author(s):  
Yossef S. Levy ◽  
Doron Merims ◽  
Hanna Panet ◽  
Yael Barhum ◽  
Eldad Melamed ◽  
...  

2001 ◽  
pp. 549-557 ◽  
Author(s):  
M Kveiborg ◽  
A Flyvbjerg ◽  
EF Eriksen ◽  
M Kassem

BACKGROUND: 1,25-Dihydroxyvitamin D3 (calcitriol) inhibits proliferation and stimulates differentiation of multiple cell types, including osteoblasts. Human (h) bone marrow stromal cells (MSCs) are a homogenous non-hematopoietic population of cells present in the bone marrow and exhibit a less differentiated osteoblastic phenotype. The IGF system, including IGFs-I, and -II and IGF binding proteins (IGFBPs), plays an important role in osteoblast cell proliferation and differentiation. OBJECTIVE: To examine the pattern of expression of the IGF system in hMSCss and its regulation by calcitriol. METHODS AND RESULTS: hMSCs express mRNA of both IGFs-I, and -II and IGFBPs-1 to -6 as shown by RT-PCR and northern blot analysis. As assessed by western ligand blotting (WLB) and western immmunoblot analysis, hMSCs secrete 38-42 kDa IGFBP-3, 24-28 kDa IGFBP-4 and a 33 kDa IGFBP-2. Calcitriol (dose range 10-10 mol/l) exerted no consistent dose-dependent effects on either IGF-I or IGF-II mRNA levels. In contrast, calcitriol treatment increased steady-state mRNA levels of IGFBPs-2, -3 and -4, but had no effect on IGFBP-5 or -6. Similarly, calcitriol increased the secretion of IGFBPs-2, -3 and -4 as determined by WLB. We found no detectable basal IGFBP-3 or IGFBP-4 protease activities in the absence or presence of calcitriol treatment. CONCLUSIONS: Our results demonstrate that hMSCs expressed a distinct pattern of IGFs and IGFBPs that may be related to their stage of differentiation. The observed increase in production of IGFBPs-2, -3 and -4 by hMSCs upon treatment with calcitriol may be an important mechanism mediating the effects of calcitriol on MSC proliferation and differentiation.


2008 ◽  
Vol 0 (0) ◽  
pp. 080422095744451 ◽  
Author(s):  
Takahisa Anada ◽  
Takashi Kumagai ◽  
Yoshitomo Honda ◽  
Taisuke Masuda ◽  
Ryutaro Kamijo ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (26) ◽  
pp. 21725-21734 ◽  
Author(s):  
Kun Ge ◽  
Wentong Sun ◽  
Shaohan Zhang ◽  
Shuxian Wang ◽  
Guang Jia ◽  
...  

Applications of europium-doped NaYF4 (NaYF4:Eu3+) nanoparticles in biomedical fields will inevitably increase their exposure to humans, therefore, the assessment of toxicities must be taken into consideration.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 430-430 ◽  
Author(s):  
Nicolas Severe ◽  
Murat Karabacak ◽  
Ninib Baryawno ◽  
Karin Gustafsson ◽  
Youmna Sami Kfoury ◽  
...  

Abstract The bone marrow niche is a heterogeneous tissue comprised of multiple cell types that collectively regulate hematopoiesis. It is thought to be a critical stress sensor, integrating information at the level of the organism down to signals at the level of the single cell. In so doing, the niche orchestrates hematopoietic stem and progenitor cell (HSPC) responses to organismal stress. However, most studies of the niche have depended on genetic marker or deletion studies that inherently limit analysis to the selected indicator genes or cells. While this has greatly enhanced our understanding of bone marrow function, it does not permit systems level evaluation of subgroups of cells and their relative response to a particular challenge. We therefore sought a less biased strategy to study bone marrow stromal cells and the cytokines they elaborate under homeostatic and stress conditions. We used Mass-Cytometry (CyTOF) to resolve protein levels at single cell resolution in mouse bone marrow. We established a panel of 36 antibodies: 20 surface and intracellular phenotypic markers, 12 cytokines regulating hematopoiesis, 1 marker of proliferation, 1 marker for DNA damage, 1 viability marker and 1 nucleated cell marker. We intentionally selected antibodies that recognize antigens already defined by others as bone marrow stromal markers. Freshly isolated non-hematopoietic cells from long bones and pelvis were analyzed and clustered into subgroups based on their protein expression signature. We applied k-means clustering using common markers to group bone marrow stromal cells into phenotypical subtypes. At steady state, analysis of over 20.000 mouse bone marrow stromal single-cells negative for the hematopoietic markers CD45 and Ter119 revealed 4 large clusters: an endothelial population expressing CD31, Sca1 and CD105, a mesenchymal stromal cell population expressing Sca1, CD140a, Nestin and LeptinR, a bone marrow stromal progenitor population expressing CD105, CD271 and Runx2 and a mature bone cell population expressing Osteocalcin and CD140a. Within these clusters, sub-populations were evident by adding CD106, CD90, CD73, Embigin, CD29, CD200, c-Kit and CD51. In total, 28 distinct populations of bone marrow stromal cells were identified based on their phenotypic signature. Only one cluster of cells was negative for all the markers we selected. Therefore, the complex heterogeneity of the bone marrow niche cells can be resolved to 28 subpopulations by single-cell protein analysis. Assessing the response of these groups to systemic challenges of medical relevance, we evaluated cells prior to whole body lethal irradiation (9.5Gy), one hour and one day later (the time of transplantation) and 3 days after irradiation (2d post transplantation) with and without transplanted cells. Notably, LeptinR+CD106+Sca1+ cells putatively essential for hematopoiesis and stem cell support were highly sensitive to and largely killed by irradiation. In contrast, endothelial cells and osteoblastic cells were resistant to irradiation. In particular, osteoblastic cells expressing osteocalcin (GFP+), embigin, NGFR and CD73 increased their expression of multiple hematopoietic cytokines including SDF-1, kit ligand, IL-6, G-CSF and TGF-b one day after irradiation. These data indicate that LeptinR+CD106+Sca1 stromal cells are unlikely to participate in HSPC engraftment post-irradiation while a subset of osteoblastic cells are. Unbiased single cell analysis can resolve subsets of bone marrow cells that respond differently to organismal stress. This method enables comprehensively quantifying subpopulation changes with specific challenges to begin defining the systems biology of the bone marrow niche. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document