scholarly journals Optimization of Maximum Routing Hop Count Parameter Based on Vehicle Density for VANET

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhonghui Pei ◽  
Wei Chen ◽  
Hongjiang Zheng ◽  
Luyao Du

Vehicular Ad Hoc Network (VANET) is the basic technology of intelligent transportation systems for providing reliable and real-time communications between vehicles and vehicles or roadside units. In order to improve the communication quality of VANET, this paper studies the effects of different maximum routing hop count parameters on the performance of the network under different vehicle densities. We establish the mathematical models of node connectivity probability and the packet delivery ratio by using the Poisson distribution model. And the maximum routing hop count selection algorithm (MRHSA) is proposed based on the theoretical model established in the paper. The simulation experiments and statistical analysis on packet delivery ratio, throughput, and end-to-end delay are performed under the straight road and urban road scenes, supported by the Vehicle in Network Simulation (Veins). The results show that the maximum routing hop count parameter is an important impact factor on the communication quality of the network. It is found that MRSHA proposed in this paper can improve the packet delivery ratio by about 9.1% at most in straight road scenarios, which indicates that MRHSA will contribute to the improvement of the communication quality of VANET.

2019 ◽  
Vol 9 (23) ◽  
pp. 5254 ◽  
Author(s):  
Roberto Hernández-Jiménez ◽  
Cesar Cardenas ◽  
David Muñoz Rodríguez

The exponential growth of cities has brought important challenges such as waste management, pollution and overpopulation, and the administration of transportation. To mitigate these problems, the idea of the smart city was born, seeking to provide robust solutions integrating sensors and electronics, information technologies, and communication networks. More particularly, to face transportation challenges, intelligent transportation systems are a vital component in this quest, helped by vehicular communication networks, which offer a communication framework for vehicles, road infrastructure, and pedestrians. The extreme conditions of vehicular environments, nonetheless, make communication between nodes that may be moving at very high speeds very difficult to achieve, so non-deterministic approaches are necessary to maximize the chances of packet delivery. In this paper, we address this problem using artificial intelligence from a hybrid perspective, focusing on both the best next message to replicate and the best next hop in its path. Furthermore, we propose a deep learning–based router (DLR+), a router with a prioritized type of message scheduler and a routing algorithm based on deep learning. Simulations done to assess the router performance show important gains in terms of network overhead and hop count, while maintaining an acceptable packet delivery ratio and delivery delays, with respect to other popular routing protocols in vehicular networks.


2018 ◽  
Vol 22 (2) ◽  
pp. 120-128
Author(s):  
Rohmah Nur Hidayah ◽  
Indrabayu Indrabayu ◽  
Intan Sari Areni

Intelligent Transportation Systems (ITS) menawarkan paradigma pemodelan baru yang mendukung komunikasi antar kendaraan secara real time menggunakan routing protocol yang disebut Vehicular Ad Hoc Network (VANET). Pada dasarnya kinerja routing protocol dipengaruhi oleh arus dan aturan lalu lintas yang bersifat dinamis sehingga perubahan tersebut akan menyebabkan perubahan pada kinerja routing protocol juga. Untuk itu, penelitian ini mengusulkan rancangan mobilitas realistis berdasarkan data makroskopis dan mikroskopis jalan perkotaan. Rancangan mobilitas dibagi menjadi 2 skenario berdasarkan kepadatan kendaraan, yaitu 125 dan 200 node. Penelitian ini bersifat simulasi dan dibagi menjadi 2 tahap. Tahap pertama yaitu simulasi mobilitas yang menunjukkan pergerakan kendaraan serta aturan lalu lintas yang disesuaikan dengan kondisi realistis. Tahap kedua adalah simulasi jaringan yang bertujuan untuk mengevaluasi kinerja routing protocol DSDV dan OLSR terhadap rancangan model mobilitas. Untuk menguji kinerja kedua  routing protocol, maka digunakan 3 metrik pengujian yaitu Packet Delivery Ratio (PDR), Overhead Ratio (OR) dan End to End Delay (E2ED). Hasil simulasi menunjukkan OLSR unggul pada metrik PDR dan OR, yaitu masing-masing 88.62% dan 57.11%. Sedangkan E2ED terbaik ditunjukkan oleh DSDV dengan nilai 0.523 detik. Kinerja terbaik kedua routing protocol ditunjukkan pada skenario 125 node. Hal ini menunjukkan kedua routing protocol belum mampu mengatasi kondisi lalu lintas perkotaan yang sangat padat.


MIND Journal ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 135-148
Author(s):  
HERIANSYAH HERIANSYAH ◽  
AHMAD REYNALDI NOPRIANSYAH ◽  
SWADEXI ISTIQPHARA

AbstrakJaringan Ad hoc pada perangkat Internet of Things (IoT) mempunyai sifat yang yang dinamis dengan node pada jaringan yang berperan sebagai router dan bergerak bebas secara random tanpa bantuan infrasturktur komunikasi sehingga topologi berubah sangat cepat seiring dengan perubahan posisi. Perubahan ini sangat mempengaruhi kualitas layanan pada perangkat IoT itu sendiri. Penelitian ini bertujuan untuk mengevaluasi protocol routing yang sudah ada dengan cara mengimplementasikan routing protocol tersebut di perangkat testbed berbasis NodeMCU ESP8266. Hal ini bertujuan untuk memilih protocol routing yang paling optimal sebelum proses implementasi dilaksanakan. Pengujian ini berlaku untuk routing protocol yang sudah ada maupun yang baru. Kinerja protocol jaringan  diukur melalui nilai  Quality of Service (QoS) ditempatkan pada scenario berbeda yang terdiri dari throughput, delay, jitter, dan packet delivery ratio sesuai dengan perbedaan beban jaringan, mobilitas, dan ukuran jaringan. Hasil penelitian ini menunjukkan bahwa testbed  yang dibangun berhasil mensimulasikan routing protocol yang ada untuk menghasilkan QoS yang baik pada perangkat IoT.Kata kunci: IoT, routing protocol, testbed, QoS.AbstractAd hoc networks on Internet of Things (IoT) devices have dynamic characteristics where the nodes on this network can operate as routers and move freely randomly without using any communication infrastructure so that the topology changes very quickly along with changes in position. This adjustment has a significant impact on the IoT device's service quality. This study aims to evaluate the existing routing protocols by implementing the routing protocol in a testbed based on NodeMCU ESP8266. It aims to choose the most optimal routing protocol before the implementation process is carried out. This test applies to both existing and new routing protocols. Network protocol performance is measured by the Quality of Service (QoS) value which includes throughput, delay, jitter, and packet delivery ratio in different scenarios based on network load, mobility, and different network sizes. The results show that this study was successful in simulating routing protocol in order to provide good QoS on IoT devices.Keywords: IoT, routing protocol, testbed, QoS.


SISTEMASI ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 215
Author(s):  
Fajar Baihaqy

MANET merupakan tipe jaringan khusus yang mampu melibatkan banyak orang atau peralatan komunikasi tanpa ketergantungan terhadap suatu infrastruktur. AODV dan DSDV merupakan contoh routing protocol yang efisien untuk jaringan Ad Hoc pada tipe routing protocol masing-masing. AODV untuk tipe routing protocol reactive dan DSDV untuk tipe routing protocol proactive. Setiap routing protocol tentunya memiliki kemampuan masing-masing, sehingga Quality of Service (QoS) untuk setiap routing protocol akan berbeda juga. Dalam penelitian melakukan analisis QoS pada routing protocol AODV dan DSDV dengan parameter yang di uji adalah Packet Delivery Ratio, Throughput, dan end-to-end Delay. Hasil pengujian memperlihatkan bahwa masing-masing routing protocol yang diteliti, routing protocol AODV memiliki waktu yang lebih cepat dalam proses pengiriman packet ke node selanjutnya. Untuk jumlah paket yang terkirim routing protocol AODV lebih baik dibandingkan DSDV.


2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


Author(s):  
Rajnesh Singh ◽  
Neeta Singh ◽  
Aarti Gautam Dinker

TCP is the most reliable transport layer protocol that provides reliable data delivery from source to destination node. TCP works well in wired networks but it is assumed that TCP is less preferred for ad-hoc networks. However, for application in ad-hoc networks, TCP can be modified to improve its performance. Various researchers have proposed improvised variants of TCP by only one or two measures. These one or two measures do not seem to be sufficient for proper analysis of improvised version of TCP. So, in this paper, the performance of different TCP versions is investigated with DSDV and AODV routing Protocols. We analyzed various performance measures such as throughput, delay, packet drop, packet delivery ratio and number of acknowledgements. The simulation results are carried out by varying number of nodes in network simulator tool NS2. It is observed that TCP Newreno achieved higher throughput and packet delivery ratio with both AODV and DSDV routing protocols.Whereas TCP Vegas achieved minimum delay and packet loss with both DSDV and AODV protocol. However TCP sack achieved minimum acknowledgment with both AODV and DSDV routing protocols. In this paper the comparison of all these TCP variants shows that TCP Newreno provides better performance with both AODV and DSDV protocols.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1942
Author(s):  
Rogaia Mhemed ◽  
Frank Comeau ◽  
William Phillips ◽  
Nauman Aslam

Much attention has been focused lately on the Opportunistic Routing technique (OR) that can overcome the restrictions of the harsh underwater environment and the unique structures of the Underwater Sensor Networks (UWSNs). OR enhances the performance of the UWSNs in both packet delivery ratio and energy saving. In our work; we propose a new routing protocol; called Energy Efficient Depth-based Opportunistic Routing with Void Avoidance for UWSNs (EEDOR-VA), to address the void area problem. EEDOR-VA is a reactive OR protocol that uses a hop count discovery procedure to update the hop count of the intermediate nodes between the source and the destination to form forwarding sets. EEDOR-VA forwarding sets can be selected with less or greater depth than the packet holder (i.e., source or intermediate node). It efficiently prevents all void/trapped nodes from being part of the forwarding sets and data transmission procedure; thereby saving network resources and delivering data packets at the lowest possible cost. The results of our extensive simulation study indicate that the EEDOR-VA protocol outperforms other protocols in terms of packet delivery ratio and energy consumption


2021 ◽  
Vol 6 (9 (114)) ◽  
pp. 6-14
Author(s):  
Shaymaa Kadhim Mohsin ◽  
Maysoon A. Mohammed ◽  
Helaa Mohammed Yassien

Bluetooth uses 2.4 GHz in ISM (industrial, scientific, and medical) band, which it shares with other wireless operating system technologies like ZigBee and WLAN. The Bluetooth core design comprises a low-energy version of a low-rate wireless personal area network and supports point-to-point or point-to-multipoint connections. The aim of the study is to develop a Bluetooth mesh flooding and to estimate packet delivery ratio in wireless sensor networks to model asynchronous transmissions including a visual representation of a mesh network, node-related statistics, and a packet delivery ratio (PDR). This work provides a platform for Bluetooth networking by analyzing the flooding of the network layers and configuring the architecture of a multi-node Bluetooth mesh. Five simulation scenarios have been presented to evaluate the network flooding performance. These scenarios have been performed over an area of 200×200 meters including 81 randomly distributed nodes including different Relay/End node configurations and source-destination linking between nodes. The results indicate that the proposed approach can create a pathway between the source node and destination node within a mesh network of randomly distributed End and Relay nodes using MATLAB environment. The results include probability calculation of getting a linking between two nodes based on Monte Carlo method, which was 88.7428 %, while the Average-hop-count linking between these nodes was 8. Based on the conducted survey, this is the first study to examine and demonstrate Bluetooth mesh flooding and estimate packet delivery ratio in wireless sensor networks


Author(s):  
C. Kumuthini ◽  
A. Nirmala ◽  
K. Gomathy

Wireless access networks based on IEEE 802.11 and IEEE 802.16 have become very popular in providing different data services. In this paper our first goal is to design and implement an integrated Wimax and Wi-Fi network and compare two of the most promising infrastructure-based wireless technologies such as IEEE 802.16e standard and upcoming IEEE 802.11p standard. We investigate, through simulation, the potential and limitations of both technologies as a communication media for vehicle-to-infrastructure (V2I) communications. The performance of the two systems is evaluated for delay, packet delivery ratio, and throughput. This research work is to integrated of WiFi with WiMAX technology in an Vehicular Ad-hoc and evaluate the performance using the NS2.31 simulator. To improve the packet delivery ratio, and End-to-End delay the proposed system is implemented using Wi-Fi with WiMAX (IEEE 802.16) routing technique. we conclude that, the comparsion results shows integration of WiFi with WiMAX will produce better result when compared the existing schemes.


Author(s):  
Pawan Singh ◽  
Suhel Ahmad Khan ◽  
Pramod Kumar Goyal

VANET is a subclass of MANET that makes the dream of intelligent transportation systems come true. As per the report of the Ministry of Road Transport and Highways, India, 1.5 million people were killed in road accidents in 2015. To reduce casualty and provide some kind of comfort during the journey, India must also implement VANETs. Applicability of VANET in Indian roads must be tested before implementation in reality. In this chapter, the real maps of Connaught Place, New Delhi from Open Street maps websites is considered. The SUMO for traffic and flow modeling is used. Many scenarios have been used to reflect real Indian road conditions to measure the performance of AODV, DSDV, and DSR routing protocols. The CBR traffic is used for the dissemination of emergency messages in urban vehicular traffic scenarios. The throughput, packet delivery ratio, and end-to-end delay are considered for performance analysis through the NS-2.35 network simulator.


Sign in / Sign up

Export Citation Format

Share Document